Layla Fouad Ali¹,Fadhel Mohammed Lafta¹and Basim Mohammed Khashman²

¹Department of Biology, College of Science, University of Baghdad, Iraq

²National Cancer Research Center, University of Baghdad, Iraq

Received: July 26, 2023/ Revised: Aug 23, 2023/Accepted: Aug 24, 2023

(✉) Corresponding Author: basimkh@gmail.com

Abstract

The latest global pandemic of severe acute respiratory syndrome (SARS-CoV-2) is triggered by a highly pathogenic RNA virus initiating coronavirus disease 2019 (COVID-19). Epigenetic modifications (mainly DNA methylation and histone modification) are key regulators of the transcriptome. Such epigenetic marks have the ability to switch on/off gene expression. Additionally, the epigenetic marks are known to be dynamic, reversible, and more vulnerable, than the genome, in response to environmental insults including pathogenic invaders such as viruses and bacteria. During the period of COVID-19 pandemic, much more efforts have been concentrated on characterizing the SARS-CoV-2 virus, determining how it enters the cells, and revealing the associated health complications. Interestingly, the SARS-CoV-2 RNA virus is believed to have the potential of hijacking the host immune cells’ epigenome to avoid antiviral defense. However, a very little scientific understanding of how the host epigenome responds to COVID-19 infection. This review summarizes the existing knowledge and provides an overview of a considerable amount of literature published on this topic, especially the contribution of DNA methylation alterations in triggering the cytokine storm in pulmonary tissues mainly by the hyper-activation of the immune system and uncontrolled influx of cytokines in response to COVID-19 infection.

Keywords: COVID-19 Infection, DNA Methylation, Cytokines Storm

References

Zhao, B. (2020). COVID-19 pandemic, health risks, and economic consequences: Evidence from China. China Economic Review64, 101561.

Desai, A. D., Lavelle, M., Boursiquot, B. C., & Wan, E. Y. (2022). Long-term complications of COVID-19. American Journal of Physiology-Cell Physiology322(1), C1-C11.

van Otterdijk, S. D., Mathers, J. C., & Strathdee, G. (2013). Do age-related changes in DNA methylation play a role in the development of age-related diseases?. Biochemical Society Transactions41(3), 803-807.

Behura, A., Naik, L., Patel, S., Das, M., Kumar, A., Mishra, A. & Dhiman, R. (2022). Involvement of epigenetics in affecting host immunity during SARS-CoV-2 infection. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 166634.

Salem, S., Mosaad, R., Lotfy, R., & Elbadry, M. (2023). Altered expression of DNA methyltransferases and methylation status of the TLR4 and TNF-α promoters in COVID-19. Archives of Virology168(3), 95.

Ryan, L., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., Tonti-Filippini, J., & Ecker, J. R. (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. nature462(7271), 315-322.

Noroozi, R., Ghafouri-Fard, S., Pisarek, A., Rudnicka, J., Spolnicka, M., Branicki, W., & Pośpiech, E. (2021). DNA methylation-based age clocks: From age prediction to age reversion. Ageing Research Reviews68, 101314.

Baylin, S. B., & Ohm, J. E. (2006). Epigenetic gene silencing in cancer–a mechanism for early oncogenic pathway addiction?. Nature Reviews Cancer6(2), 107-116.

Goodier, J. L., & Kazazian, H. H. (2008). Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell135(1), 23-35.

Pappalardo, X. G., & Barra, V. (2021). Losing DNA methylation at repetitive elements and breaking bad. Epigenetics & chromatin14(1), 1-21.

Bartolomei, M. S., Oakey, R. J., & Wutz, A. (2020). Genomic imprinting: An epigenetic regulatory system. PLoS genetics16(8), e1008970.

Cardenas, A., Rifas-Shiman, S. L., Sordillo, J. E., DeMeo, D. L., Baccarelli, A. A., Hivert, M. F. & Oken, E. (2021). DNA methylation architecture of the ACE2 gene in nasal cells of children. Scientific reports11(1), 7107.

Foresta, C., Rocca, M. S., & Di Nisio, A. (2021). Gender susceptibility to COVID-19: a review of the putative role of sex hormones and X chromosome. Journal of endocrinological investigation44, 951-956.

Loyfer, N., Magenheim, J., Peretz, A., Cann, G., Bredno, J., Klochendler, A., & Kaplan, T. (2023). A DNA methylation atlas of normal human cell types. Nature613(7943), 355-364.

Dey, A., Vaishak, K., Deka, D., Radhakrishnan, A. K., Paul, S., Shanmugam, P., & Banerjee, A. (2023). Epigenetic perspectives associated with COVID-19 infection and related cytokine storm: an updated review. Infection, 1-16.

Ragab, D., Salah Eldin, H., Taeimah, M., Khattab, R., & Salem, R. (2020). The COVID-19 cytokine storm; what we know so far. Frontiers in immunology, 1446.

Rath, S., Perikala, V., Jena, A. B., & Dandapat, J. (2021). Factors regulating dynamics of angiotensin-converting enzyme-2 (ACE2), the gateway of SARS-CoV-2: Epigenetic modifications and therapeutic interventions by epidrugs. Biomedicine & Pharmacotherapy143, 112095.

Daniel, G., Paola, A. R., Nancy, G., Fernando, S. O., Beatriz, A., Zulema, R., & Adriana, R. (2022). Epigenetic mechanisms and host factors impact ACE2 gene expression: Implications in COVID-19 susceptibility. Infection, Genetics and Evolution104, 105357.

Foolchand, A., Mazaleni, S., Ghazi, T., & Chuturgoon, A. A. (2022). A review: Highlighting the links between epigenetics, COVID-19 infection, and vitamin D. International Journal of Molecular Sciences23(20), 12292.

Calzari, L., Zanotti, L., Inglese, E., Scaglione, F., Cavagnola, R., Ranucci, F., & Gentilini, D. (2023). Role of epigenetics in the clinical evolution of COVID-19 disease. Epigenome-wide association study identifies markers of severe outcome. European Journal of Medical Research28(1), 1-15.

Godoy-Tena, G., Barmada, A., Morante-Palacios, O., de la Calle-Fabregat, C., Martins-Ferreira, R., Ferreté-Bonastre, A. G., & Ballestar, E. (2022). Epigenetic and transcriptomic reprogramming in monocytes of severe COVID-19 patients reflects alterations in myeloid differentiation and the influence of inflammatory cytokines. Genome Medicine14(1), 1-22.

Brown, J. A., Amir, M. and Zeng, M. Y. (2023). Epigenetic modifications and regulation in infection. Epigenetics in Organ Specific Disorders. 181-209.

Saraei, R., Hazrati, A., Valizadeh, H., Hashemi, B., Navashenaq, J. G., Roshangar, L., & Ahmadi, M. (2021). Mesenchymal Stem Cells Impact on COVID-19 Patients Immune System, an Ex Vivo Study.

Yang, X., Rutkovsky, A. C., Zhou, J., Zhong, Y., Reese, J., Schnell, T., … & Nagarkatti, M. (2022). Characterization of altered gene expression and histone methylation in peripheral blood mononuclear cells regulating inflammation in covid-19 patients. The Journal of Immunology208(8), 1968-1977.

Kgatle, M. M., Lawal, I. O., Mashabela, G., Boshomane, T. M. G., Koatale, P. C., Mahasha, P. W., & Sathekge, M. M. (2021). COVID-19 is a multi-organ aggressor: epigenetic and clinical marks. Frontiers in Immunology12, 752380.

Barturen, G., Carnero-Montoro, E., Martínez-Bueno, M., Rojo-Rello, S., Sobrino, B., Porras-Perales, Ó., & Alarcón-Riquelme, M. E. (2022). Whole blood DNA methylation analysis reveals respiratory environmental traits involved in COVID-19 severity following SARS-CoV-2 infection. Nature Communications13(1), 4597.

Balnis, J., Madrid, A., Hogan, K. J., Drake, L. A., Chieng, H. C., Tiwari, A., & Jaitovich, A. (2021). Blood DNA methylation and COVID-19 outcomes. Clinical epigenetics13(1), 118.

Bowler, S., Papoutsoglou, G., Karanikas, A., Tsamardinos, I., Corley, M. J., & Ndhlovu, L. C. (2022). A machine learning approach utilizing DNA methylation as an accurate classifier of COVID-19 disease severity. Scientific Reports12(1), 17480.

Konigsberg, I. R., Barnes, B., Campbell, M., Davidson, E., Zhen, Y., Pallisard, O., & Barnes, K. C. (2021). Host methylation predicts SARS-CoV-2 infection and clinical outcome. Communications medicine1(1), 42.

Arnold, C. G., Konigsberg, I., Adams, J. Y., Sharma, S., Aggarwal, N., Hopkinson, A., & Monte, A. A. (2022). Epigenetics may characterize asymptomatic COVID-19 infection. Human genomics16(1), 27.

Corley, M. J., Pang, A. P., Dody, K., Mudd, P. A., Patterson, B. K., Seethamraju, H., & Ndhlovu, L. C. (2021). Genome-wide DNA methylation profiling of peripheral blood reveals an epigenetic signature associated with severe COVID-19. Journal of leukocyte biology110(1), 21-26.

Zhou, S., Zhang, J., Xu, J., Zhang, F., Li, P., He, Y., & Dong, L. (2021). An epigenome‐wide DNA methylation study of patients with COVID‐19. Annals of human genetics85(6), 221-234.

de Moura, M. C., Davalos, V., Planas-Serra, L., Alvarez-Errico, D., Arribas, C., Ruiz, M., & Esteller, M. (2021). Epigenome-wide association study of COVID-19 severity with respiratory failure. EBioMedicine66.

Pang, A. P., Higgins-Chen, A. T., Comite, F., Raica, I., Arboleda, C., Went, H., & Corley, M. J. (2022). Longitudinal study of DNA methylation and epigenetic clocks prior to and following test-confirmed COVID-19 and mRNA vaccination. Frontiers in Genetics13, 819749.

Wang, G., Xiong, Z., Yang, F., Zheng, X., Zong, W., Li, R., & Bao, Y. (2022). Identification of COVID-19-associated DNA methylation variations by integrating methylation array and scRNA-Seq data at cell-type resolution. Genes13(7), 1109.

Huoman, J., Sayyab, S., Apostolou, E., Karlsson, L., Porcile, L., Rizwan, M., & Lerm, M. (2021). Epigenome-wide DNA methylation profiling of healthy COVID-19 recoverees reveals a unique signature in circulating immune cells.

Bradic, M., Taleb, S., Thomas, B., Chidiac, O., Robay, A., Hassan, N., & Abi Khalil, C. (2022). DNA methylation predicts the outcome of COVID-19 patients with acute respiratory distress syndrome. Journal of Translational Medicine20(1), 526.

Li, L., Hu, L., Qiao, X., Mo, R., Liu, G. and Hu, L. (2023). Integrative Analysis of DNA Methylation and Gene Expression Data Identifies Potential Biomarkers and Functional Epigenetic Modules for SARS-CoV-2. Biochemical Genetics. 1-12.

Bohlin, J., Page, C. M., Lee, Y., Pettersson, J. H. O., Jugessur, A., Magnus, P., & Håberg, S. E. (2022). Age and sex effects on DNA methylation sites linked to genes implicated in severe COVID-19 and SARS-CoV-2 host cell entry. Plos one17(6), e0269105.

Chen, L., Liao, H., Huang, G., Ding, S., Guo, W., Huang, T., & Cai, Y. (2022). Identification of DNA methylation signature and rules for SARS-CoV-2 associated with age. Frontiers in Bioscience-Landmark27(7), 204.

Steyaert, S., Trooskens, G., Delanghe, J. R., & Van Criekinge, W. (2020). Differential methylation as a mediator of COVID-19 susceptibility. BioRxiv, 2020-08.

Mao, W., Miller, C. M., Nair, V. D., Ge, Y., Amper, M. A. S., Cappuccio, A., & Chikina, M. (2023). A methylation clock model of mild SARS‐CoV‐2 infection provides insight into immune dysregulation. Molecular Systems Biology19(5), e11361.

Zhang, Z. (2022). COVID-19 DNA Methylation Markers and Druggable Targets and Potential Malignant Diseases with Long Incubation Period.

How to cite this article

Ali, L. F., Lafta, F. M. and Khashman, B. M. (2023). Host’s DNA methylation alterations accompanying COVID-19 infection: A Review article. Microbial Science Archives, Vol. 3(3), 87-93.https://doi.org/10.47587/MSA.2023.3303

Licence                  Article Metadata

This work is licensed under a Creative Commons Attribution 4.0 International License.

View Details