Narasimhamurthy Konappa¹, Soumya Krishnamurthy², Abijith M. Singh³, Divya, T4., Srinivas Chowdappa¹and Udayashankar C Arakere5

¹Department of Microbiology and Biotechnology, Jnanabharathi Campus, Bangalore University, Bangalore, Karnataka, India

²Field Marshal K.M. Cariappa College, A Constituent College of Mangalore University, Madikeri, Karnataka, India

3Department of Biotechnology, JSS College for Women, Saraswathipuram, Mysuru-570006, Karnataka, India

4Central Integrated Pest Management Centre, Jaivik Bhavan, Kannamangala Post, Bengaluru Karnataka-560067, India

5Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore –570 006, Karnataka, India

Received: July 26, 2023/ Revised: Aug 12, 2023/Accepted: Aug 16, 2023

(✉) Corresponding Author: acudayshankar@gmail.com

Abstract

Salinity is a major abiotic stress that limits the growth and development of plants, and is no special to tomato. Scientists are in constant search for natural remedies against abiotic stress affecting crops worldwide. Beneficial microbes are abundantly available in nature, and if employed rationally, bound to benefit micro-biota of soil. Trichoderma sp. stimulates plant growth and resistance to a varied range of adverse environmental conditions. The present study demonstrates the effect of two Trichoderma asperellum isolates (T4 and T8) in alleviating the deleterious effects of varying concentrations of NaCl (0-200 mM) stress in tomato. Treatment with T. asperellum isolates reduced the effect of stress and tomato seedlings showed significant improvement in seed germination; shoot and root length, shoot and root fresh weight, plant dry weight and chlorophyll content along with decrease in seedling death as compared to control. The T. asperellum treatments in tomato plants under NaCl stress also significantly increased the soluble sugar and protein. The antioxidant enzymes, CAT, POX, SOD and APX in tomato seedlings also significantly increased with T. asperellum treatment, as compared to control. These results prove T. asperellum to be beneficial in imparting NaCl stress tolerance in tomato and a new paradigm for developing environmentally safe alternative for improvement of NaCl stress tolerance.

Keywords: Trichoderma asperellum, Tomato, Salinity, Plant Growth Promotion, Antioxidant Enzymes Activity

References

Abdul Baki, A. A. & Anderson, J.  D. (1973). Vigour determination in soybean seed by multiple criteria. Crop Science, 13, 630–633.

Ahmad, P., Hashem, A., Abd-Allah, E. F., Alqarawi, A. A., John, R. & Egamberdieva, D. (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Frontiers in Plant Science, 6, 868.

Akash, H. & Padmanabh, D. (2018). Plant Responses to Trichoderma spp. and their tolerance to abiotic stresses: A review. Journal of Pharmacognosy and Phytochemistry, 7, 758–766.

Alqarawi, A. A., Abd Allah, E. F., Hashem, A., Al HuqailAsma, A., Abdulaziz, A. & Al Sahli, A. A. (2014). Impact of abiotic salt stress on some metabolic activities of Ephedra alata Decne. Journal of Food, Agriculture and Environment 12, 620–625.

Anshu, A., Agarwal, P., Mishra, K. (2022). Synergistic action of Trichoderma koningiopsis and T. asperellum mitigates salt stress in paddy. Physiology and Molecular Biology of Plants, 28, 987–1004.

Arakere, U. C., Jagannath, S., Krishnamurthy, S., Chowdappa, S. and Konappa, N., 2022. Microbial bio-pesticide as sustainable solution for management of pests: achievements and prospects. Biopesticides, pp.183-200.

Ashraf, S. A., El-Sayed, Hanan, E., Dief, El Sayed, A., Hashem, Ahmed, M., Desouky, Zamarud Shah, Salwa Fawzan. (2022). Fungal biopriming increases the resistance of wheat to abiotic stress. Journal of Plant Biotechnology, 49, 107-117.

Azarmi, R., Hajieghrari, B. & Giglou, A. (2011). Trichoderma isolated on tomato seedling growth response and nutrient uptake. African Journal of. Biotechnology 10, 5850–5855.

Azevedo-Neto, A. D., Prisco, J. T., Enéas-Filho, J., Abreu, C. E. B. & Gomes-Filho, E. (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 56, 87–94.

Bartels, D. & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 24, 23–58.

Bharti, N., Pandey, S. S., Barnawal, D., Patel, V. K. & Kalra, A. (2016). Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress, Scientific Reports, 6, 34768.

Boamah, S., Zhang, S., Xu, B., Li, T., Calderón-Urrea, A. & John Tiika R. (2022). Trichoderma longibrachiatum TG1 increases endogenous salicylic acid content and antioxidants activity in wheat seedlings under salinity stress. Peer Journal, 10:e12923.

Boamah, S., Zhang, S., Xu, B., Li, T., Calderón-Urrea, A. (2021) Trichoderma longibrachiatum (TG1) enhances wheat seedlings tolerance to salt stress and resistance to Fusarium pseudograminearum. Frontiers in Plant Science, 12, 741231.

Bomle, D. V., Kiran, A., Kumar, J. K., Nagaraj, L. S., Pradeep, C. K., Ansari, M. A., Alghamdi, S., Kabrah, A., Assaggaf, H., Dablool, A. S., Murali, M., Amruthesh, K.N., Udayashankar, A.C. and Niranjana, S.R. 2021. Plants Saline Environment in Perception with Rhizosphere Bacteria Containing 1-Aminocyclopropane-1-Carboxylate Deaminase. International Journal of Molecular Sciences 22, 11461.

Cakmak, I. & Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 98, 1222–1227.

Contreras-Cornejo, H. A., Macías-Rodríguez, L., Del-Val, E. & Larsen, J. (2016). Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology, 92, fiw036

De Sousa, T. P., Chaibub, A. A., da Silva, G. B. & de Filippi, M. C. C. (2020). Trichoderma asperellum modulates defense genes and potentiates gas exchanges in upland rice plants. Physiological and Molecular Plant Pathology, 112, 101561. doi: 10.1016/j.pmpp.2020.101561

Doni, F., Fathurrahman, F., Mispan, M. S., Suhaimi, N. S. M., Yusoff, W. M. W. & Uphoff, N. (2019). Transcriptomic profiling of rice seedlings inoculated with the symbiotic fungus Trichoderma asperellum SL2. Journal of Plant Growth Regulation 38, 1507–1515. doi: 10.1007/s00344-019-09952-7

Estévez-Geffriaud, V., Vicente, R., Vergara-Díaz, O., Narváez Reinaldo, J. J. & Trillas, M. I. (2020). Application of Trichoderma asperellum T34 on maize (Zea mays) seeds protects against drought stress. Planta 252, 1–12. doi: 10.1007/s00425-020-03404-3

Fu, J. & Huang, B. (2001). Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environmental and Experimental Botany, 45,105–114.

Grayson, M. (2013). Agriculture and drought. Nature 501:S1.doi: 10.1038/501S1a

Hameed, A., Egamberdieva, D., Abd-Allah, E. F., Hashem, A., Kumar, A. & Ahmad, P. (2014). Salinity stress and arbuscular mycorrhizal symbiosis in plants, In: Miransari, M. (Ed.), Use of microbes for the alleviation of soil stresses. Springer, New York.139–159.

Hashem, A., Abd-Allah, E. F., Alqarawi, A. A., Al Huqail, A. A. & Egamberdieva, D. (2014). Alleviation of abiotic salt stress in Ochradenus baccatus (Del.) by Trichoderma hamatum (Bonord.) Bainier, Journal of Plant Interactions, 9, 857–868.

Heath, R. L. & Packer, L. 1968. Photoperoxidation in isolated chloroplasts: I. kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125,189–198.

Hermosa, R., Rubio, M. B., Cardoza, R. E., Nicolás, C., Monte, E. & Gutiérrez, S. (2013). The contribution of Trichoderma to balancing the costs of plant growth and defense. International Journal of Microbiology, 16, 69–80.

Hermosa, R., Viterbo, A., Chet, I. & Monte, E. (2012). Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 158, 17–25.

Hoagland, D. R. & Arnon, D. I. (1950). The water culture method of growing plants without soil. California Agricultural Experiment Station, University of California, Berkeley, College Agriculture Circular, No. 1950, 347.

Illescas, M., Morán-Diez., M. E., Martínez de Alba, Á. E, Hermosa, R. & Monte, E. (2022). Effect of Trichoderma asperellum on Wheat Plants’ Biochemical and Molecular Responses, and Yield under Different Water Stress Conditions. International Journal of Molecular Sciences, 23, 6782.

Karuppiah, V., Sun, J., Li, T., Vallikkannu, M. & Chen, J. (2019). Co-cultivation of Trichoderma asperellum GDFS1009 and Bacillus amyloliquefaciens 1841 causes differential gene expression and improvement in the wheat growth and biocontrol activity. Frontiers in Microbiology, 10 (2019), 1068.

Kashyap, P. L., Rai, P., Srivastava, A. K. & Kumar, S. (2017). Trichoderma for climate resilient agriculture. World Journal of Microbiology and Biotechnology, 33, 1–18.

Khan, N., Ali, S., Shahid, M. A., Mustafa, A., Sayyed, R. Z. & Curá, J. A. (2021). Insights into the Interactions among Roots, Rhizosphere and Rhizobacteria for Improving Plant Growth and Tolerance to Abiotic Stresses: A Review. Cells, 10, 1551.

Khoshmanzar, E., Aliasgharzad, N., Neyshabouri, M. R., Khoshru, B., Arzanlou, M. & Asgari Lajayer, B. (2020). Effects of Trichoderma isolates on tomato growth and inducing its tolerance to water-deficit stress. International Journal of Environmental Science and Technology, 17, 869–878.

Kumar, P. & Sharma, P. K. (2020). Soil Salinity and Food Security in India. Frontiers in Sustainable Food Systems, 4, 533781

Lavanya, S. N., Niranjan Raj,S., Udayashankar, A. C., Kini, K. R.,  Amrutesh, K. N., Niranjana, S. R. and Shetty, H. S. (2012). Comparative analysis of activities of vital defense enzymes during induction of resistance in pearl millet against downy mildew. Archives of Phytopathology and Plant Protection 45 (11) 1252-1272.

Lavanya, S. N., Udayashankar, A. C., Niranjan Raj, S., Mohan, C. D., Gupta, V. K., Tarasatyavati,C.,  Srivastava, R. and Nayaka. (2018). Lipopolysaccharide-induced priming enhances NO-mediated activation of defense responses in pearl millet challenged with Sclerospora graminicola. 3 Biotech 8: 475.

Lawson, T. & Flexas, J. (2020). Fuelling life: recent advances in photosynthesis research. Plant Journal, 101,753-755.

Li, Y. 2009. Physiological responses of tomato seedlings (Lycopersicon esculentum) to salt stress. Modern Applied Science, 3, 171–176.

Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382.

Liu, S., Dong, Y., Xu, L. & Kong, J. (2014). Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regulations 73, 67–68.

Lorito, M., Woo, S. L., Harman, G. E. & Monte, E. (2010). Translational research on Trichoderma: From’omics to the field. Annual Review of Phytopathology 48, 395–417.

Lowry, O. H., Rosebrough, N. J., Farr, L. A., and Randall, R. J. (1951). Protein measurements with the folin-phenol reagent. Journal of Biological Chemistry, 193, 265–275.

Machado, R. M. A., and Serralheiro, R. P. (2017). Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3, 30

Mandal, S., Raju, R., Kumar, A., Kumar, P. & Sharma, P. C. (2018). Current status of research, technology response and policy needs of salt-affected soils in India – a review. Indian Society of Coastal Agricultural Research, 36, 40–53.

Mastouri, F., Björkman, T. & Harman, G. E. (2010). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100, 1213–1221.

Mastouri, F., Bjorkmanm, T. & Harman, G. E. (2012). Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit. Molecular Plant-Microbe Interactions, 25, 1264–1271

Mishra, M. K. & Prakash, V. (2010). Response of non-enzymatic antioxidants to zinc induced stress at different pH in Glycine max L. cv. Merrill. American Journal of Plant Sciences, 1, 1‒10

Mishra, N., Khan, S. S. & Sundari, S. K. (2016). Native isolate of Trichoderma: a biocontrol agent with unique stress tolerance properties. World Journal of Microbiology and Biotechnology, 32,130.

Montesinos, B. S., Fernando Diánez., Alejandro Moreno-Gavira., Francisco J. Gea & Mila Santos. (2019). Plant Growth Promotion and Biocontrol of Pythium ultimum by Saline Tolerant Trichoderma Isolates under Salinity Stress. International Journal of Environmental Research Public Health pp. 2053.

Naguib, M. I. (1963). Colorimetric estimation of plant polysaccharides. Zucker 16:15–18

Naguib, M. I. (1964). Effect of sevin on carbohydrate and nitrogen metabolism during germination of cotton seeds. Indian Journal of Experimental Biology, 2,149–152.

Nakano, Y. & Asada, K. (1981). Hydrogen-peroxide is scavenged by ascorbate-specific Peroxidase in spinach-chloroplasts. Plant Cell Physiology, 22, 867–880.

Narasimha Murthy, K., Krishnamurthy, S., Arakere, U. C. (2020). Efficacy of indigenous plant growth-promoting rhizobacteria and Trichoderma strains in eliciting resistance against bacterial wilt in a tomato. Egyptian Journal of Biological Pest Control, 30, 106.

Narasimhamurthy, K., Malini, M., Fazilath, U., Soumya, K. K., Chandra, N. S., Niranjana, S. R. & Srinivas, C. (2016). Lactic acid bacteria mediated induction of defense enzymes to enhance the resistance in tomato against Ralstonia solanacearum causing bacterial wilt. Scientia Horticulturae, 207,183–192.

Narasimhamurthy, K., Nirmala Devi, D. & Srinivas, C. (2013b). Efficacy of Trichoderma asperellum against Ralstonia solanacearum under greenhouse conditions. Annals of Plant Sciences, 2, 342–350

Narasimhamurthy, K., Soumya, K., Chandranayak, S., Niranjana, S. R. & Srinivas, C.  (2018). Evaluation of biological efficacy of Trichoderma asperellum against tomato bacterial wilt caused by Ralstonia solanacearum. Egyptian Journal of Biological Pest Control, 28, 1-11.

Narasimhamurthy, K., Uzma, F. & Srinivas, C. (2013a). Induction of systemic resistance by Trichoderma asperellum against bacterial wilt of tomato caused by Ralstonia solanacearum. International Journal of Advanced Research, 1, 181–194.

Nguyen, D., Rieu, I., Mariani, C. & van Dam, N. M. (2016). How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Molecular Biology, 91,727–740.

Niu, G. D., Rodriguez, D., Dever, J. & Zhan, J. (2013). Growth and physiological responses of fve cotton genotypes to sodium chloride and sodium sulfate saline water irrigation. Cotton Science, 17(2), 233–244.

Pandey, V., Ansari, M. W., Tula, S., Yadav, S. & Sahoo, R. K. (2016). Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes. Planta, 243, 1251.

Patel, B. B., Patel, Bharat, B. & Dave, R. S. (2011). Studies on infiltration of saline–alkali soils of several parts of Mehsana and Patan districts of north Gujarat. Journal of Applied Sciences in Environmental Sanitation, 1(1), 87– 92.

Poveda, J. (2020). Trichoderma parareesei favors the tolerance of rapeseed (Brassica napus L.) to salinity and drought due to a chorismate mutase. Agronomy, 10,116.

Qadir, M., Quillerou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J. (2014). Economics of salt-induced land degradation and restoration. Natural Resources Forum, 38, 282–295.

Radwan, D. E. M. (2012). Salicylic acid induced alleviation of oxidative stress caused by clethodim in maize (Zea mays L.) leaves. Pesticide Biochemistry and Physiology, 102, 182–188.

Rao, K. V. M. & Sresty, T. V. S. (2000). Antioxidant parameters in the seedlings of pigeon pea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Science, 157, 113–128.

Rasool, S., Ahmad, A., Siddiqi, T. O. & Ahmad, P. (2013). Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiologiae Plantarum, 35, 1039–1050.

Resende, M. P., Jakoby, I. C. M. C., dos Santos, L. C. R., Soares, M. A., Pereira, F. D., Souchie, E. L. & Silva, F. G. (2014). Phosphate solubilization and phytohormone production by endophytic and rhizosphere Trichoderma isolates of guanandi (Calophyllum Brasiliense Cambess). African Journal of Microbiology Research, 8, 2616–2623.

Rubio, M. B., Hermosa, R., Vicente, R., Gómez-Acosta, F. A., Morcuende, R., Monte, E. & Bettiol, W. (2017). The combination of Trichoderma harzianum and chemical fertilization leads to the deregulation of phytohormone networking, preventing the adaptive responses of tomato plants to salt stress. Frontiers in Plant Science, 8, 29.

Rubio, M. B., Quijada, N. M., Pérez, E., Domínguez, S., Monte, E. & Hermosa, R. (2014). Identifying beneficial qualities of Trichoderma parareesei for Plants. Applied and Environmental Microbiology, 80, 1864–1873.

Ruchi, T., Chetan, K. & Rashmi, T. (2021). Trichoderma Koningii enhances tolerance against thermal stress by regulating ROS metabolism in tomato (Solanum lycopersicum L.) plants. Journal of Plant Interactions, 16, 116-125.

Ruiz-Lozano, J. M., Aroca, R., Zamarreño, Á. M., Molina, S., Andreo-Jiménez, B., Porcel, R., García-Mina, J. M., Ruyter-Spira, C. & López-Ráez, J.A. (2016). Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environment, 39, 441–452.

Scudeletti, D., Crusciol, C. A. C., Bossolani, J. W., Moretti, L. G., Momesso, L., Servaz Tubaña, B., de Castro, S. G. Q., De Oliveira, E. F. & Hungria, M. (2021). Trichoderma asperellum Inoculation as a Tool for Attenuating Drought Stress in Sugarcane. Frontiers in Plant Science, 12, 645542

Seckin, B., Sekmen, A. H. & Turkan, I. (2009). An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. Journal of Plant Growth Regulation, 28, 12–20.

Segarra, G., Casanova, E., Bellido, D., Odena, M. A., Oliveira, E., and Trillas, I. (2007). Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics, 7, 3943–3952. doi: 10.1002/pmic.200700173

Shahid, S. A., Zaman, M. & Heng, L. (2018). Soil salinity: historical perspectives and a world overview of the problem, in Guideline for Salinity Assessment, Mitigation and Adaptation using Nuclear and Related Techniques (Cham: Springer), 43–53.

Shaw, S., Le Cocq, K., Paszkiewicz, K., Moore, K., Winsbury, R. & de Torres Zabala, M. (2016). Transcriptional reprogramming underpins enhanced plant growth promotion by the biocontrol fungus Trichoderma hamatum GD12 during antagonistic interactions with Sclerotinia sclerotiorum in soil. Molecular Plant Pathology 17:1425–1441

Shoresh, M., Mastouri, F. & Harman, G. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21–43.

Shrivastava, P. & Kumar, R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22,123–131.

Siddiqui, Z. S., Cho, J. I., Hanpark, S., Kwon, T. R., Ahn, B. O., Lee, G. S., Jeong, M. J., Whankim, K., Konlee, S. & Chulpark, S. (2014). Phenotyping of rice in salt stress environment using high-throughput infrared imaging. Acta Botanica Croatica, 73, 149–158.

Singh, R., Singh, P. & Sharma, R. (2014). Microorganism as a tool of bioremediation technology for cleaning environment: A review. Proceedings of the International Academy of Ecology and Environmental Sciences 4:1–6

Singh, R. P., Jha, P. & Jha, P. N. (2015). The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress. Journal of Plant Physiology, 184, 57–67.

Singh, V., Upadhyay, R. S., Sarma, B. K., and Singh, H. B. (2016a). Trichoderma asperellum spore dose depended modulation of plant growth in vegetable crops. Microbiological Research, 193, 74–86.

Singh, Y. P., Mishra, V. K., Singh, S., Sharma, D. K., Singh, D., Singh, U. S., Singh, R. K., Haefele, S. M.  & Ismail, A. M. (2016b). Productivity of sodic soils can be enhanced through the use of salt tolerant rice varieties and proper agronomic practices. Field Crops Research, 190, 82–90

Sofy, M. R., Elhawat, N. & Tarek, A. (2020b). Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defense via limiting Na+ uptake in common bean (Phaseolus vulgaris L.). Ecotoxicology and Environmental Safety 200, 110732.

Tandon, A., Anshu, A., Kumar, S., Yadav, U., Mishra, S. K., Srivastava, S., Chauhan, P. S., Srivastava, P. K., Bahadur, L., Shirke, P. A. & Srivastava, M. (2022). Trichoderma-primed rice straw alters structural and functional properties of sodic soil. Land Degradation & Development, 33(5), 698–709.

Tang, F. Y., Shih, C. J., Cheng, L. H., Ho, H. J. & Chen, H. J. (2020). Transcriptome analysis of heat stress and drought stress in pearl millet based on Pacbio full-length transcriptome sequencing. BMC Plant Biollgy, 20, 1–15.

Tang, F. Y., Shih, C. J., Cheng, L. H., Ho, H. J. & Chen, H. J. (2008). Lycopene inhibits growth of human colon cancer cells via suppression of the Akt signaling pathway. Molecular Nutrition and Food Research, 52, 646‒654.

Udayashankar, A. C., Rajini, S. B., Nandhini, M., Suhas, Y. S., Niranjana, S. R., Lund, O. S. and Prakash, H. S. 2016. Acute oral toxicity, dermal irritation and eye irritation study of Eclipta alba aqueous extract in sprague dawley rats and New Zealand white rabbits. International Research Journal of Pharmacy 7 (6): 103-109.

Waghund, R. R., Shelake, R. M. & Sabalpara, A. N. (2016). Trichoderma: a significant fungus for agriculture and environment. African Journal of Agricultural Research, 11, 1952–1965.

Wu, Q. S., Srivastava, A. K. & Zou, Y. N. (2013). AMF-induced tolerance to drought stress in citrus: a review. Scientia Horticulturae, 164, 77–87.

Yasmeen, R. & Siddiqui, Z. S. (2017). Physiological responses of crop plants against Trichoderma harzianum in saline environment. Acta Botanica Croatica, 76, 154–162.

Zhang, S., Gan, Y. & Xu, B. (2016). Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Frontiers in Plant Science, 7, 1405

Zhang, X. Z. (1992). The measurement and mechanism of lipid peroxidation and SOD, POD and CAT activities in biological system. In: Zhang XZ (ed) Research methodology of crop physiology. Agriculture Press, Beijing, pp 208–211.

Zhao, L., Wang, Y. & Kong, S. (2020). Effects of Trichoderma asperellum and its siderophores on endogenous auxin in Arabidopsis thaliana under iron-deficiency stress. International Microbiology, 23, 501–509.

How to cite this article

Konappa, N., Krishnamurthy, S., Singh, A. M., Divya, T., Chowdappa, S. and Arakere, U. C. (2023). Role of Trichoderma asperellum in mitigating NaCl stress in tomato substantiated by anti-oxidative enzymes. Microbial Science Archives, Vol. 3(3), 101-111.https://doi.org/10.47587/MSA.2023.3305

License                      Article Metadata

This work is licensed under a Creative Commons Attribution 4.0 International License.

View Details