Diop Abdou¹, Ndiaye Babacar¹, Serigne Mourtada Mbacké SOW³ , Diallo Thierno Abdoulaye¹, Mahou Chantal¹ and Seck Abdoulaye¹,²

¹Medical Biology Laboratory, Pasteur Institute of Dakar, Senegal

²Cheikh Anta Diop University of Dakar, Senegal

³Kaffrine National Hospital Centre, Senegal

Received: Jul 5, 2023/ Revised: Aug 28, 2023/Accepted: Sept 1, 2023

(✉) Corresponding Author: diopabdou03@yahoo.fr

Abstract

Haemophilus influenzae, a Gram-negative coccobacillus unique to humans, is known to cause a substantial number of respiratory tract infections, along with severe invasive conditions like meningitis and septicemia. This study aimed to ascertain the antibiotic susceptibility patterns of H. influenzae strains isolated from the Pasteur Institute Medical Laboratory in Dakar.A retrospective study was carried out between January 2018 and February 2022 on strains isolated from respiratory tract samples (sputum, BAL). Strains were isolated after culture on Chocolate PVX agar and incubated at 35°C in 5% CO2 for 24 to 48 hours. Haemophilus influenzae-like colonies were identified by conventional methods including requirement tests for haemin (factor X) and NAD (factor V). Biochemical identification was performed using API 20 NH biochemical strips (BioMerieux, France). Disk diffusion test or Kirby-Bauer method had been used to perform antibiotic susceptibility testing on Chocolate PVX media. 132 strains of H. influenzae were isolated. 56% of the strains were from females and 44% from males with a mean age of 44 years. The most represented age groups were [40-59] and [³60] with 31% each. Of the strains, 126 (95%) were from sputum and 6 (5%) from bronchoalveolar lavage (BAL). Resistance rates of H. influenzae isolates to ampicillin, amoxicillin+clavulanic acid, cefepime, cefotaxime, chloramphenicol, ciprofloxacin, meropenem and tetracycline were 24.7%, 22.2%, 72.7%, 9.5%, 8.1%, 8.3% and 22.1%, 22.8% respectively. Antibiotic resistance in H. influenzae requires continued attention with effective detection methods and a rational antibiotic use policy.

Keywords: Haemophilus influenzae, antimicrobial resistance, Biochemical identification, Resistance rates

References

Agrawal, A., & Murphy, T. F. (2011). Haemophilus influenzae Infections in the H. influenzae Type b Conjugate Vaccine Era ▿. Journal of Clinical Microbiology, 49(11), 3728‑3732.

Brown, N. E., Blain, A. E., Burzlaff, K., Harrison, L. H., Petit, S., Schaffner, W., Smelser, C.,Thomas, A., Triden, L., Watt, J. P., Pondo, T., Whaley, M. J., Hu, F., Wang, X., Oliver, S., & Soeters, H. M. (2021). Racial Disparities in Invasive Haemophilus influenzae Disease-United States, 2008-2017. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 73(9), 1617‑1624.

Burns, J. L., Mendelman, P. M., Levy, J., Stull, T. L., & Smith, A. L. (1985). A permeability barrier as a mechanism of chloramphenicol resistance in Haemophilus influenzae. Antimicrobial Agents and Chemotherapy, 27(1), 46‑54. https://doi.org/10.1128/AAC.27.1.46.

Carrera-Salinas, A., González-Díaz, A., Calatayud, L., Mercado-Maza, J., Puig, C., Berbel, D., Càmara, J., Tubau, F., Grau, I., Domínguez, M. Á., Ardanuy, C., & Martí, S. (2021).Epidemiology and population structure of Haemophilus influenzae causing invasive disease. Microbial Genomics, 7(12), 000723.

Deghmane, A.-E., Hong, E., Chehboub, S., Terrade, A., Falguières, M., Sort, M., Harrison, O., Jolley, K. A., & Taha, M.-K. (2019). High diversity of invasive Haemophilus influenzae. isolates in France and the emergence of resistance to third generation cephalosporins by alteration of ftsI gene. The Journal of Infection, 79(1), 7‑14.

Giufrè, M., Cardines, R., Marra, M., Carollo, M., Cerquetti, M., & Stefanelli, P. (2023). Antibiotic Susceptibility and Molecular Typing of Invasive Haemophilus influenzae Isolates, with Emergence of Ciprofloxacin Resistance, 2017–2021, Italy. Microorganisms, 11(2)

Guitor, A. K., & Wright, G. D. (2018). Antimicrobial Resistance and Respiratory Infections. Chest, 154(5), 1202‑1212. https://doi.org/10.1016/j.chest.2018.06.019.

Kehl, S. C., & Dowzicky, M. J. (2015). Global assessment of antimicrobial susceptibility among Gram-negative organisms collected from pediatric patients between 2004 and 2012 :  Results from the Tigecycline Evaluation and Surveillance Trial. Journal of Clinical Microbiology, 53(4), 1286‑1293.

Kuo, S.-C., Chen, P.-C., Shiau, Y.-R., Wang, H.-Y., Lai, J.-F., Huang, W., & Lauderdale, T.-L. Y. (2014). Levofloxacin-resistant haemophilus influenzae, Taiwan, 2004-2010. Emerging Infectious Diseases, 20(8), 1386‑1390.

Lâm, T.-T., Claus, H., Elias, J., Frosch, M., & Vogel, U. (2015). Ampicillin resistance of invasive Haemophilus influenzae isolates in Germany 2009-2012. International Journal of Medical Microbiology: IJMM, 305(7), 748‑755. https://doi.org/10.1016/j.ijmm.2015.08.028.

Langereis, J. D., & de Jonge, M. I. (2015). Invasive Disease Caused by Nontypeable Haemophilus influenzae. Emerging Infectious Diseases, 21(10), 1711‑1718.

Li, J.-P., Hua, C.-Z., Sun, L.-Y., Wang, H.-J., Chen, Z.-M., & Shang, S.-Q. (2017). Epidemiological Features and Antibiotic Resistance Patterns of Haemophilus influenzae Originating from Respiratory Tract and Vaginal Specimens in Pediatric Patients. Journal of Pediatric and Adolescent Gynecology, 30(6), 626‑631.

Madore, D. V. (1996). Impact of immunization on Haemophilus influenzae type b disease.Infectious Agents and Disease, 5(1), 8‑20.

Mazamay, S., Bompangue, D., Guégan, J.-F., Muyembe, J.-J., Raoul, F., & Broutin, H. (2020).Understanding the spatio-temporal dynamics of meningitis epidemics outside the belt : The case of the Democratic Republic of Congo (DRC). BMC Infectious Diseases, 20(1), 291.

Monegat, M. (2020). Épidémiologie des infections à Haemophilus influenzae de 2014 à 2019 à l’Assistance Publique des Hôpitaux de Marseille. Sciences pharmaceutiques. Ffdumas- 02961330. Université d’Aix-Marseille.

Murphy, T. F., Faden, H., Bakaletz, L. O., Kyd, J. M., Forsgren, A., Campos, J., Virji, M., & Pelton, S. I. (2009). Nontypeable Haemophilus influenzae as a pathogen in children. The Pediatric Infectious Disease Journal, 28(1), 43‑48.

Naito, S., Takeuchi, N., Ohkusu, M., Takahashi-Nakaguchi, A., Takahashi, H., Imuta, N., Nishi, J., Shibayama, K., Matsuoka, M., Sasaki, Y., & Ishiwada, N. (2018). Clinical and Bacteriologic Analysis of Nontypeable Haemophilus influenzae Strains Isolated from Children with Invasive Diseases in Japan from 2008 to 2015. Journal of Clinical Microbiology, 56(7), e00141-18.

Nürnberg, S., Claus, H., Krone, M., Vogel, U., & Lâm, T.-T. (2021). Cefotaxime resistance in invasive Haemophilus influenzae isolates in Germany 2016-19 : Prevalence, epidemiology and relevance of PBP3 substitutions. The Journal of Antimicrobial Chemotherapy, 76(4), 920‑929.

Shiro, H., Sato, Y., Toyonaga, Y., Hanaki, H., & Sunakawa, K. (2015). Nationwide survey of the development of drug resistance in the pediatric field in 2000–2001, 2004, 2007, 2010, and 2012 : Evaluation of the changes in drug sensitivity of Haemophilus influenzae and patients’ background factors. Journal of Infection and Chemotherapy, 21(4), 247‑256.

Slack, M. P. E. (2021). Long Term Impact of Conjugate Vaccines on Haemophilus influenzae Meningitis : Narrative Review. Microorganisms, 9(5), 886.

Takala, A. K., Eskola, J., Leinonen, M., Käyhty, H., Nissinen, A., Pekkanen, E., & Mäkelä, P. H. (1991). Reduction of oropharyngeal carriage of Haemophilus influenzae type b (Hib) in children immunized with an Hib conjugate vaccine. The Journal of Infectious Diseases, 164(5), 982‑986.

Tristram, S., Jacobs, M. R., & Appelbaum, P. C. (2007). Antimicrobial resistance in Haemophilus influenzae. Clinical Microbiology Reviews, 20(2), 368‑389.

Van Klingeren, B., van Embden, J. D., & Dessens-Kroon, M. (1977). Plasmid-mediated chloramphenicol resistance in Haemophilus influenzae. Antimicrobial Agents and Chemotherapy, 11(3), 383‑387.

Wang, H.-J., Wang, C.-Q., Hua, C.-Z., Yu, H., Zhang, T., Zhang, H., Wang, S.-F., Lin, A.-W., Cao, Q., Huang, W.-C., Deng, H.-L., Cao, S.-C., & Chen, X. (2019). Antibiotic Resistance Profiles of Haemophilus influenzae Isolates from Children in 2016 : A Multicenter Study in China. The Canadian Journal of Infectious Diseases & Medical Microbiology = Journal Canadien des Maladies Infectieuses et de la Microbiologie Médicale, 2019, 6456321.

Wen, S., Feng, D., Chen, D., Yang, L., & Xu, Z. (2020). Molecular epidemiology and evolution of Haemophilus influenzae. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 80, 104205.

Wen, S., Mai, Y., Chen, X., Xiao, K., Lin, Y., Xu, Z., & Yang, L. (2023). Molecular Epidemiology and Antibiotic Resistance Analysis of Non-Typeable Haemophilus influenzae (NTHi) in Guangzhou : A Representative City of Southern China. Antibiotics, 12(4), Article 4.

How to cite this article

Abdou, D. Babacar, N., SOW, S.M.M., Abdoulaye, D.T., Chantal, M. & Abdoulaye, S. (2023). Antibiotic susceptibility profiles of Haemophilus influenzae isolates collected in Dakar between 2018 and 2022. Microbial Science Archives, Vol. 3(3), 120-124. https://doi.org/10.47587/MSA.2023.3307

 

View Details