Arshed H. Yaseen and Laith A. Yaaqoob

 Department of Biotechnology, College of Science, Baghdad University, Baghdad, Iraq

Received: Feb 21, 2023/ Revised: Mar 10, 2023/Accepted: Mar 14, 2023

(✉) Corresponding Author: arshed.h87@uosamara.edu.iq

Abstract

Multi-drug resistant bacteria Acinetobacter baumannii developed as a result of improperly used antibiotics, which are hard to treat and led to serious health problems all over the world. Therefore, it has become necessary to find some alternative ways to overcome this problem and secure human health. In this study, cobalt oxide nanoparticles were biosynthesized using blood serum from individuals with high blood levels as a reducing and stabilizing agent. Additionally, research on the therapeutic uses of the created nanoparticles’ antibacterial activity against the human pathogenic bacteria A. baumannii is being done. Co oxide NPs formation was characterized and confirmed using UV-VIS, atomic force microscopy (AFM), X-ray diffractometer (XRD), and transmission electron microscopy (TEM). Biosynthesized Cobalt oxide NPs appeared in polycrystalline structure with an average diameter of 43.45nm.  Bacterial isolates were identified using morphological, gram stains, and biochemical tests for more confirmation Vitek-2 system was used also and the results showed that out of 172 clinical samples, 91 isolates were identified as A. baumannii. Antibiotic Susceptibility test was done against 12 various antibiotics to determine the MDR isolate for further study. Anti-bacterial activity test against MDR A. baumannii was carried out using different concentrations of Co oxide NPs (1.25, 2.5, 5,10, and 20 mg/mL). The biological activity results of biosynthesized Co oxide NPs showed that the maximum inhibition concentration was 20mg/ml with a zone diameter of 22 mm while the minimum inhibition concentration (MIC) was 5 mg/ml with a 10mm zone diameter.

Keywords: Cobalt Oxide, Nanoparticle Characterizations, Biosynthesis, Serum, A. baumannii, Antibacterial Activity

References

Abass, A. A., Abdulridha, W. M., Alaarage, W. K., Abdulrudha, N. H. & Haider, J. (2021). Evaluating the antibacterial effect of cobalt nanoparticles against multi-drug resistant pathogens. Journal of Medicine and Life, 14, 823-833.

Abdal Dayem, A., Hossain, M. K., Lee, S. B., Kim, K., Saha, S. K., Yang, G. M., & Cho, S. G. (2017). The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. International journal of molecular sciences18(1), 120.‏

Ajarem, J. S., Maodaa, S. N., Allam, A. A., Taher, M. M., & Khalaf, M. (2022). Benign synthesis of cobalt oxide nanoparticles containing red algae extract: antioxidant, antimicrobial, anticancer, and anticoagulant activity. Journal of Cluster Science33(2), 717-728. ‏

Al-Abdulla, S. 2012. Physiology. 1st edu. Dar Al-massira, Amman, Jordan.300 PP.

Al-Haideri, H. H. (2019). Gene expression of blaOXA-51-like and blaOXA-23 in response to β-lactam antibiotic in clinically isolated Acinetobacter baumannii and Acinetobacter lowffii from urine samples. Iraqi Journal of Agricultural Sciences50(4). ‏

Altaee, M. F., Yaaqoob, L. A., & Kamona, Z. K. (2020). Evaluation of the Biological Activity of Nickel Oxide Nanoparticles as Antibacterial and Anticancer Agents. Iraqi Journal of Science, 2888-2896. ‏ 

American Society for Microbiology. 98th General Meeting Workshop Program. (1998). Practical Approach to the Identification of the Medically Important Glucose Non-Fermenting Gram-Negative Bacilli. American Society for Microbiology, Washington, D.C.

Anwar, A., Numan, A., Siddiqui, R., Khalid, M., Khan, N., A. (2019). Cobalt nanoparticles as novel nano therapeutics against Acanthamoeba castellanii. Parasites & Vectors.12(1):280. doi:10.1186/s13071-019-3528-2.

Bibi, I., Nazar, N., Iqbal, M., Kamal, S., Nawaz, H., Nouren, S., … & Abbas, M. (2017). Green and eco-friendly synthesis of cobalt-oxide nanoparticle: characterization and photo-catalytic activity. Advanced Powder Technology28(9), 2035-2043. ‏

Cao, F., Deng, R., Tang, J., Song, S., Lei, Y., & Zhang, H. (2011). Cobalt and nickel with various morphologies: mineralizer-assisted synthesis, formation mechanism, and magnetic properties. CrystEngComm13(1), 223-229. ‏

 Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 20th ed.: approved standard M07-A8. Wayne, PA: CLSI; 2011.

Dakhlaoui, A., Smiri, L. S., Babadjian, G., Schoenstein, F., Molinié, P., & Jouini, N. (2008). Controlled elaboration and magnetic properties of submicrometric cobalt fibers. The Journal of Physical Chemistry C112(37), 14348-14354.‏

Danilenko, U., Vesper, H. W., Myers, G. L., Clapshaw, P. A., Camara, J. E., & Miller, W. G. (2020). An updated protocol based on CLSI document C37 for preparation of off-the-clot serum from individual units for use alone or to prepare commutable pooled serum reference materials. Clinical Chemistry and Laboratory Medicine (CCLM)58(3), 368-374. ‏

Dos Santos Ramos MA, Da Silva PB, Spósito L, De Toledo LG, Bonifácio BV, Rodero CF, Dos Santos KC, Chorilli M, Bauab TM. (2018) “Nanotechnology-based drug delivery systems for control of microbial biofilms: a review”. Int J Nanomedicine.13,1179-1213.

Effendi, M. H., & Harijani, N. (2017). Cases of Methicillinresistant Staphylococcus aureus (MRSA) from raw milk in East Java, Indonesia. Glob. Vet19(1), 500-503. ‏

Forbes, B. A.; Sahm, D. F. and Weissfeld, A. S. (2007). Bailey and Scott‟s Diagnostic Microbiology. 12th ed., Mosby Elsevier. Texas. P. 334-339.

Gupta V, Kant V, Sharma AK, Sharma M. Comparative assessment of antibacterial efficacy for cobalt nanoparticles, bulk cobalt and standard antibiotics: A concentration dependent study. Nanosystems: Physics, Chemistry, Mathematics. 2020; 11(1): 78–85. doi:10.17586/2220-8054-2020-11-1-78-85.

Hafeez, M., Shaheen, R., Akram, B., Haq, S., Mahsud, S., Ali, S., & Khan, R. T. (2020). Green synthesis of cobalt oxide nanoparticles for potential biological applications. Materials Research Express7(2), 025019. ‏

Hamza, M. R., & Yaaqoob, L. A. (2020). Evaluation the effect of green synthesis titanium dioxide nanoparticles on acinetobacter baumannii isolates. The Iraqi Journal of Agricultural Science51(6), 1486-1495. ‏

Iravani, S., & Varma, R. S. (2020). Sustainable synthesis of cobalt and cobalt oxide nanoparticles and their catalytic and biomedical applications. Green Chemistry22(9), 2643-2661. ‏

Kaoru Ikuma, Alan, W., Decho, Boris. L. T., Lau. (2015) “When nanoparticles meet biofilms interactions guiding the environmental fate and accumulation of nanoparticles”. Front Microbiol. 6,591.

Kareem, P. A., Alsammak, E. G., Abdullah, Y. J., & Bdaiwi, Q. M. (2019). Estimation of antibacterial activity of zinc oxide, titanium dioxide, and silver nanoparticles against multidrug-resistant bacteria isolated from clinical cases in Amara City, Iraq. Drug Invent. Today11(5).‏

Khalil, A. T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z. K., & Maaza, M. (2020). Physical properties, biological applications and biocompatibility studies on biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck.). Arabian Journal of Chemistry13(1), 606-619.‏

Khan, S., Ansari, A. A., Khan, A. A., Ahmad, R., Al-Obaid, O., & Al-Kattan, W. (2015). In vitro evaluation of anticancer and antibacterial activities of cobalt oxide nanoparticles. JBIC Journal of Biological Inorganic Chemistry20(8), 1319-1326.‏

Kong, I. C., Ko, K. S., Koh, D. C., & Chon, C. M. (2020). Comparative effects of particle sizes of cobalt nanoparticles to nine biological activities. International journal of molecular sciences21(18), 6767. ‏

Lin, T. C., Hung, K. H., and Peng, C. H. (2015) “Nanotechnology-based drug delivery treatments and specific targeting therapy for age-related macular degeneration”. J Chin Med Assoc.78(11),635–641.

McConnell, M. J., Actis, L., & Pachón, J. (2013). Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS microbiology reviews37(2), 130-155. ‏

Meher, S. K. and Rao, G. R. (2011). Effect of microwave on the nanowire morphology, optical, magnetic, and pseudo capacitance behavior of Co3O4. The Journal of Physical Chemistry. 115: 25543-25556.

Mohammadinejad, R., Shavandi, A., Raie, D. S., Sangeetha, J., Soleimani, M., Hajibehzad, S. S. & Varma, R. S. (2019). Plant molecular farming: production of metallic nanoparticles and therapeutic proteins using green factories. Green chemistry21(8), 1845-1865. ‏

Nazeruddin, G. M., Prasad, N. R., Prasad, S. R., Garadkar, K. M., & Nayak, A. K. (2014). In-vitro bio-fabrication of silver nanoparticle using Adhathoda vasica leaf extract and its anti-microbial activity. Physica E: Low-Dimensional Systems and Nanostructures, 61, 56-61.

Satpathy, G., & Manikandan, E. (2019). Cobalt Nanoparticle As The Antibacterial Tool. International Journal of Engineering and Advanced Technology (IJEAT)8, 3684-3687.‏

Seil, J. T., & Webster, T. J. (2012). Antimicrobial applications of nanotechnology: methods and literature. International journal of nanomedicine7, 2767. ‏

Siddique, M., Khan, N. M., Saeed, M., Ali, S., & Shah, Z. (2021). Green synthesis of cobalt oxide nanoparticles using Citrus medica leaves extract: characterization and photo-catalytic activity. Zeitschrift für Physikalische Chemie235(6), 663-681. ‏

Singh, R., Nadhe, S., Wadhwani, S., Shedbalkar, U., Chopade, B. A. (2016). “Nanoparticles for Control of Biofilms of Acinetobacter Species”.Materials. 9,383.

Sundararaju, S., Arumugam, M., & Bhuyar, P. (2020). Microbacterium sp. MRS-1, a potential bacterium for cobalt reduction and synthesis of less/non-toxic cobalt oxide nanoparticles (Co3O4). Beni-Suef University Journal of Basic and Applied Sciences9(1), 1-9.‏

Urabe, A. A., & Aziz, W. J. (2019). Biosynthesis of cobalt oxide (Co3O4) nanoparticles using plant extract of Camellia sinensis (L.) Kuntze and Apium graveolens L. as the antibacterial application. World News of Natural Sciences24, 356-364. ‏

Vera, A., V. Rigobello, and Y. Demarigny, (2009). Comparative study of culture media used for sourdough lactobacilli. Food Microbiology, 26(7), pp.728-733.

Verma, S., Baig, R. N., Nadagouda, M. N., & Varma, R. S. (2016). ACS Sustainable Chem. Eng4, 2333-2336. ‏

Yang, H. (Ed.). (2014). Atomic force microscopy (AFM): Principles, modes of operation and limitations. Nova Science Publishers, Incorporated.

How to cite this article

Yaseen, A. H. and Yaaqoob, L. A. (2023). Biosynthesis of cobalt oxide nanoparticles using blood serum as reducing and stabilizing agent for therapeutic use against multi-drug resistant Acinetobacter baumannii. Microbial Science Archives, Vol. 3(1), 24-31. https://doi.org/10.47587/MSA.2023.3105

Licence                  Article Metadata

This work is licensed under a Creative Commons Attribution 4.0 International License.

View Details