Zaid mohammed joodi✉, Nadhem Hasan Hayder, and Wala’a Shawkat Ali
Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
Received: May 22, 2023/ Revised: June 15 / Accepted: June 16, 2023
(✉) Corresponding Author: zaid.joudie1106@sc.uobaghdad.edu.iq
Abstract
The goal of current research is to study the optimal conditions for the biosurfactant (lipid) and bacteriocin production from local isolate Lactobacillus sp. A total of 120 Lactobacillus sp. isolates were obtained from several sources, recognized according to biochemical tests, and screened utilizing primary and secondary screen processes for bacteriocin and lipid production. According to the observed results, the isolate Lactobacillus sp. ZMJ20 obtained from the clinical sample of healthy Iraqi females revealed to the highest lipids emulsifying activity E24% (60%) and decrease in surface tension to 29.2 mN/m and higher bacteriocin inhibitory impact against pathogenic isolate Candida albicans with a diameter of (22 mm). Therefore, the isolate Lactobacillus sp. ZMJ20 was selected for identification and optimization studies. The isolate was recognized as Lactobacillus plantarum by VITEK 2 system and ensured via molecular identification by PCR technique. Modified MRS medium was used in the fermentation processes for bacteriocin and lipid production by of L. plantarum. The findings of optimum conditions showed that fructose was the best source of carbon and energy instead of dextrose (glucose) and the best nitrogenous sources were meat and yeast extract at ratio (1: 1) with a percentage of (2.5%) instead of peptone, meat, and yeast extract together. The ideal pH was (6.5), the optimum temperature was (37°C) and the best incubation period for bacteriocin and biosurfactant (lipid) production was after 48 and 72 hours respectively. All the production processes are adopted under anaerobic conditions.
Keywords: Bacteriocin, Biosurfactant, Emulsification, Antifungal, Inhibition
References
Aasen, I. M., Møretrø, T., Katla, T., Axelsson, L., and Storrø, I. (2000). Influence of complex nutrients, temperature, and pH on bacteriocin production by Lactobacillus sakei CCUG 42687. Applied Microbiology and Biotechnology, 53(2), 159-166.
Anandaraj, B. and Thivakaran, P. (2010). Isolation and Production of Biosurfactant producing organisms from oil spilled soil. J. Biosci Tech. 1 (3): 120-126.
Amortegui, J., Rodríguez-López, A., Rodríguez, D., Carrascal, A. K., Alméciga-Díaz, C. J., Melendez, A. D. P., & Sánchez, O. F. (2014). Characterization of a new bacteriocin from Lactobacillus plantarum LE5 and LE27 isolated from ensiled corn. Applied biochemistry and biotechnology, 172(7), 3374-3389.
Bassetti, M.; Peghin, M. and Timsit, J. F. (2016). The current treatment landscape: candidiasis. J. Antimicrob. Chemother., 71(suppl_2), ii13-ii22. Bednarski, W., Adamczak, M., Tomasik, J., and Płaszczyk, M. (2004). Application of oil refinery waste in the biosynthesis of glycolipids by yeast. Bioresource technology, 95(1), 15-18.
Bonilla, M.; Olivaro, C.; Corona, M.; Vazquez, A. and Soubes, M. (2005). Production and characterization of a new bioemulsifier from P. putida ML2, J. Appl. Microbiol. 98: 456–463.
Bruno-Bárcena, J. M., Azcárate-Peril, M. A., Ragout, A., de Valdez, G., Raya, R., and Sineriz, F. (1998). Fragile cells of Lactobacillus casei suitable for plasmid DNA isolation. Biotechnology Techniques, 12(2), 97-99.
Cangliang S. and yifan Z. (2017). Food Microbiology Laboratory for the Food Science Student.ISBN.978-3-319-58370-9. Therefore it can be suggested that, isolated bacteria had ability to produce an acidic compound that converted phenol red indicator to a yellow color.
Chander, J. (2017). Textbook of Medical Mycology. 4th ed. J.P. Medical Ltd.
Denning, D. W. and Bromley, M. J. (2015). How to bolster the antifungal pipeline. Science, 347(6229): 1414-1416
Duar, R. M., Lin, X. B., Zheng, J., Martino, M. E., Grenier, T., Pérez- Muñoz,M. E., Leulier, F., Gänzle, M. and Walter, J. (2017). Lifestyles in transition:evolution and natural history of the genus Lactobacillus. FEMS. Microbiol. Rev.,41: S27–S48.
Dyaee, NoorALHuda, and Khalid Jaber Kadhum Luti. “Classical and statistical optimization by response surface methodology for enhancing biomass and bacteriocin production by Lactobacillus Plantarum.” Iraqi Journal of Science (2019): 494-508.
Entissar, F. A. and Shatha, S. H. (2013). Production and Characterization of Bioemulsifier from Locally Isolated Serratiamarcescens S10. Vol.16 (1), March, pp.147-155.
Gautam, K. K. and Tyagi V. K. (2006). Microbial surfactants: A Review. J. Oleo. Sci., 55(4): 155-166.
Georgiou, G. S., Lin, C. and Sharma M. M. (1992). “Surface-active compounds from microorganisms”. Biotechnology, 10(1): 60–65.
Guerra-Santos, L. H., Kappeli, O. and Fiechter, A. (1986). Dependence of Pseudomonas aeruginosacontinuous culture biosurfactant production on nutritional and environmental factors. Applied Microbiology and Biotechnology. 24: 443-448.
Hiba T. R. and K. Luti, (2020). A probiotic application of Lactobacillus acidophilus HT1 for the treatment of some skin pathogens. M.Sc. Thesis.Department of biotechnology, Collage of science, University of Baghdad.
Jameel, A. A., & Haider, N. H. (2021). Study the antimicrobial and antiadhesive activity of purified biosurfactant produced from lactobacillus plantarum against pathogenic bacteria. Iraqi Journal of Agricultural Sciences, 52(5), 1194-1206.
Kadhum, M. K. H., and Haydar, N. H. (2020). Production and characterization OF biosurfactant (glycolipid) from lactobacillus helviticus M5 and evaluate its antimicrobial and antiadhesive activity. The Iraqi Journal of Agricultural Science, 51(6), 1543-1558.
Kandler, O. and Weiss, N. (1986). Genus Lactobacillus. In: Bergey’s Manual of Systematic Bacteriology, Vol. 2. (edited by Sneath, P.H. A.; Mair, N.S. and Hold, J.G.), William and Wilkins Co., Baltimore, USA.
Karami, S. b., Roayaei, M., Hamzavi, H., Bahmani, M., Azar, H., Leila, M. and Kopaei, M. (2017). Isolation and identification of probiotic Lactobacillus from local dairy and evaluating their antagonistic impact on pathogens. Int. J. Pharm. Investig., 7(3): 137-141.
Koutsoumanis, K., Allende, A., Álvarez‐Ordóñez, A., Bolton, D., Bover‐Cid, S., Chemaly, M., Davies, R., Hilbert, F., Lindqvist, R., Nauta, M., Peixe, L., Ru, G., Simmons, M., Skandamis, P., Suffredini, E., Cocconcelli, P. S., Escámez, P. S., Maradona, M. P., Querol, A., Suarez, J. E., Sundh, I., Vlak, J., Barizzone, F., Correia, S. and Herman, L. (2019). Update of the list of QPS‐recommended biological agents intentionally added to food or feed as notified to EFSA 9: suitability of taxonomic units notified to EFSA until September 2018. EFSA. Journal, 17(1): 5555.
Leal-Sánchez, M. V., Jiménez-Díaz, R., Maldonado-Barragán, A., Garrido-Fernández, A., and Ruiz-Barba, J. L. (2002). Optimization of bacteriocin production by batch fermentation of Lactobacillus plantarum LPCO10. Applied and Environmental Microbiology, 68(9), 4465-4471.
Lewus, C. B. and Montville, T. J. (1991) Detection of bacteriocins produced by lactic acid bacteria.J.Microbiol.Methods, 13:145-150.
Mokoena, M. P. (2017). Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini- review. Molecules, 22(8): 1255.
Nouralhuda, A. H. and K. Luti (2022). Evaluation of in vitro antimicrobial activity of Lactobacillus parabuchneri as a potential probiotic in toothpaste against some oral pathogens. A thesis. University of Baghdad.
Obayori, O. S. Ilori, M. O., Adebusoye, S. A., Oyetibo, G. O., Omotayo, A. E. and Amund, O. O. (2009). Degradation of hydrocarbons and biosurfactant production by Pseudomonas sp. strain LP1. World Journal of Microbiology and Biotechnology. 25: 1615-1623.
Okoliegbe, I. N. and Agarry, O. O. (2012): Application of microbial surfactant (areview). Scholarly Journals of Biotechnology, 1(1):15-23.
Ołdak, A., Zielińska, D., Rzepkowska, A. and Kołożyn-Krajewska, D. (2017). Comparison of antibacterial activity of Lactobacillus plantarum strains isolatedfrom two different kinds of regional cheeses from Poland: oscypek and korycinski cheese. BioMed research international. 2017: 1- 10.
Oyewole, O. B. and Odunfa, S. A. (1990). Characterization and distribution of lactic acid bacteria in cassava fermentation during fufu production. J.Appl.Bacteriol., 68:145-152.
Persson, A., Oesterberg, E. and Dostalek, M. (1988). Biosurfactant production by Pseudomonas fluorescens378: Growth and product characteristics. Appl. Microbiol. Biotechnol. 29(1):1–4.
Pilasombut, K., Sakpuaram, T., Wajjwalku, W., Nitisinprasert, S., Swetwiwathana, A., Zendo, T., Fujita, K., Nakayama, J. and Sonomoto, K. (2005). Purification and amino acid sequence of a bacteriocins produced by Lactobacillus salivarius K7 isolated from chicken intestine. Songklanakarin J.Sci.Technol., 28(1):121-131.
Rikalovic, M. G., Abdel-Mawgoud, A. M., Deziel E., Gojic-Cvijovic, G. D., Nestorovic, Z., Vrvic, M. M. and Karadzic, I. M. (2013). Comparative analysis of rhamnolipids from novel environmental isolates of pseudomonas aeruginosa. J Surfactants and Deterg. 16:673-682.
Rodrigues, L., Moldes, A., Teixeira, J. and Oliveira, R. (2006b). Kinetic study of fermentative biosurfactant production by Lactobacillus strains. Biochemical Engineering Journal. 28: 109–116.
Rodrigues, L. R., Banat, I. M., Teixera, J., Oliveira, R. (2006). Biosurfactants: potential applications in medicine. J.Antimicrob.Chemoth. 57: 609-618.
Rosenberg, E., Zuckerberg, A., Rubinovitz, C., and Gutnick, D. (1979). Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties. Applied and Environmental Microbiology, 37(3), 402-408.
Salvetti, E. and O’Toole, P. W. (2017). The genomic basis of lactobacilli as health-promoting organisms. Microbiol. Spectr., 5(3): 1-17.
Savadogo, A., Ouattara, C. A., Savadogo, P. W., Barro, N., Ouattara, A. S., and Traoré, A. S. (2004). Identification of exopolysaccharides-producing lactic acid bacteria from Burkina Faso fermented milk samples. African Journal of Biotechnology, 3(3), 189-194.
Seddighi, N. S., Salari, S. and Izadi, A. R. (2017). Evaluation of antifungal impact of iron-oxide nanoparticles against different Candida species. IET Nanobiotechnol., 11(7): 883–888.
Sekhon, R. S., Lin, H., Childs, K. L., Hansey, C. N., Buell, C. R., de Leon, N. and Kaeppler, S. M. (2011). Genome-wide atlas of transcription during maize development. Plant J. 66(4):553-63.
Shoeb, E., Ahmed, N., Akhter, J., Badar, U., Siddiqu, I. K., Ansari, F. A., Waqar M., Imtiaz, S., Akhtar, N., Shaikh, Q. A., Baig, R., Butt, S., Khan, S., Hussain, S., Ahmed, B. and Ansari, M. A. (2015): Screening and characterization of biosurfactant-producing bacteria isolated from the Arabian Sea coast of Karachi, Turk J. Biol. 39: 210-216.
Tahmourespour, A., Salehi, R., and Kermanshahi, R. H. (2011). Lactobacillus acidophilus-derived biosurfactant impact on gtfb and gtfc expression level in streptococcus mutans biofilm cells. Brazilian Journal of Microbiology. 42: 330-339.
Todorov, S. D. (2009). Bacteriocins from Lactobacillus plantarum production, genetic organization and mode of action. Braz. J. Microbiol., 40(2): 209-221.
Todorov, S. D. (2008). Bacteriocin production by Lactobacillus plantarum AMA-K isolated from Amasi, a Zimbabwean fermented milk product and study of the adsorption of bacteriocin AMA-K to Listeria sp. Brazilian Journal of microbiology, 39, 178-187.
Todorov, S. D. and Dicks, L. M. T. (2005). Lactobacillus plantarum isolated from molasses produces bacteriocins active against Gram- negative bacteria. Enzyme and Microbial Technology, 36(2-3): 318-326.
Zahabi, Z. F., Sharififar, F., Almani, P. G. N. and Salari, S. (2020). Antifungal activity of different fractions of Salvia rhytidea Benth as a valuable medicinal plant against various species of Candida in Kerman Province, southeast Iran. Gene Rep., 19:1–7.
Zainab, J. K. and Nadhim, H. H. (2022). The Synergestic Impact of Biosurfactant and Bacteriocin from Local Isolate Lactobacillus plantarum against Clinical Pathogens of Wound Infections. A thesis. University of Baghdad.
Zangl, I., Pap, I. J., Aspöck, C. and Schüller, C. (2020). The role of Lactobacillus species in the control of Candida via biotrophic interactions. Microbial Cell, 7(1):1 – 14.
Zotta, T., Guidone, A., Tremonte, P., Parente, E. and Ricciardi, A. (2012). A comparison of fluorescent stains for the assessment of viability and metabolic activity of lactic acid bacteria. World Journal of Microbiology and Biotechnology, 28(3): 919-927.
How to cite this article
Joodi, Z. M., Hayder, N. H. and Shawkat Ali, W. S. (2023). Study the Optimum Conditions for Biosurfactant and bacteriocin production from Lactobacillus plantarum isolated from different sources. Microbial Science Archives, Vol. 3(2), 58-69. https://doi.org/10.47587/MSA.2023.3202
Licence Article Metadata
This work is licensed under a Creative Commons Attribution 4.0 International License.