Fils Landry Mpelle¹✉, Esther Nina Ontsira Ngoyi², Sekangue Obili Jery², Tsoumou Ndzeli Herlen Lucerna¹, Etienne Nguimbi ¹,³, Christian Aime Kayath ¹,³, Simon Charles Kobawila¹
¹Laboratory of Cellular and Molecular Biology, Faculty of Science and Technology, Marien Ngouabi University, Brazzaville
²Laboratory of Bacteriology-Virology of the University Hospital of Brazzaville, Faculty of Health Sciences
Marien Ngouabi University, Brazzaville
³Institute for Research in Exact and Natural Sciences (IRSEN)
Received: Nov 20, 2022/ Revised: Dec 22, 2022/ Accepted: Dec 24, 2022
(✉) Corresponding Author: mflilslandry@gmail.com
Abstract
This study aimed to characterize the genes coding for ESBLs in TEM and CMY-2 Enterobacteriaceae. 65 strains of Enterobacteriaceae were isolated from 65 patients, of which 32.43% came from outpatients and 67.56% from hospitalized patients. The study was carried out over 6 months. The samples (urine, pus, and blood) were collected from hospitalized and external patients at the Brazzaville University Hospital. Strains were identified by API20E. An antibiogram was by diffusion in agar medium (MH) according to CA-SFM. The ESBL phenotype was detected by synergy. The plasmid cephalosporinase phenotype was determined by decreasing the diameter of inhibition around the cefoxitime disc in a strain resistant to ESBL inhibitors. Antibiotic resistance genes were characterized by PCR and sequencing. Sequences were assembled by Codon Code Aligner and compared by BlastX with Genbank, NCBI, and ARGANNOT. Phylogenetic gene trees were constructed using MEGA 7 software. 65 strains of Enterobacteriaceae were isolated from 65 patients, of which 32.43% came from outpatients and 67.56% from hospitalized patients. Except for imipenem, colistin; the amikacin and fosfomycin, tested antibiotics show high resistance to most of the beta-lactam, as well as resistance to very frequent aminoglycosides, sulfamides, tetracyclines, and Fluoroquinolones. PCR reveals that 97.29% possessed the TEM gene and 5.40% produced the CMY-2 gene. 64% of the isolates were isolated from urine samples, with a predominance of Enterobacter cloacae strains on ESBL production (75%). 60% of ESBL strains were isolated in the service of metabolic diseases. Sequencing of the amplification products revealed that the blaCTX-M1 strains were all TEM-1. Une consecvation des motifs SxxK en positions ABL 71 à 74 était observée pour l’alignement des sequences du groupe TEM. This study revealed the presence of the TEM and CMY-2 genes at disturbing frequencies. It proves the need to promote an infection prevention program with the regulation of antibiotic therapy in hospitals in Congo Brazzaville.
Keywords Enterobacteriaceae, ESBL, Antibiotic resistance, CHU, Brazzaville
References
Amazian, K., Fendri, C., Missoum, M. F., Bouzouaia, N., Rahal, K., Savey, A., … Fabry, J. (2006). Multicenter pilot survey of resistant bacteria in the Mediterranean area. European Journal of Clinical Microbiology & Infectious Diseases : Official Publication of the European Society of Clinical Microbiology, 25(5), 340–343. https://doi.org/10.1007/s10096-006-0125-z
Belmonte, O., Drouet, D., Alba, J., Moiton, M. P., Kuli, B., Lugagne-Delpon, N., … Jaffar-Bandjee, M. C. (2010). Évolution de la résistance des entérobactéries aux antibiotiques sur l’île de la Réunion: émergence des bêta-lactamases à spectre élargi. Pathologie Biologie, 58(1), 18–24. https://doi.org/10.1016/j.patbio.2009.07.021
Bonnet, R., Sampaio, J. L. M., Labia, R., De Champs, C., Sirot, D., Chanal, C., & Sirot, J. (2000). A novel CTX-M β-lactamase (CTX-M-8) in cefotaxime-resistant Enterobacteriaceae isolated in Brazil. Antimicrobial Agents and Chemotherapy, 44(7), 1936–1942. https://doi.org/10.1128/AAC.44.7.1936-1942.2000
Bouchillon, S. K., Johnson, B. M., Hoban, D. J., Johnson, J. L., Dowzicky, M. J., Wu, D. H., … Bradford, P. A. (2004). Determining incidence of extended spectrum β-lactamase producing Enterobacteriaceae, vancomycin-resistant Enterococcus faecium and methicillin-resistant Staphylococcus aureus in 38 centres from 17 countries: The PEARLS study 2001-2002. International Journal of Antimicrobial Agents, 24(2), 119–124. https://doi.org/10.1016/j.ijantimicag.2004.01.010
Bush, K., & Jacoby, G. A. (2010). Updated functional classification of β-lactamases. Antimicrobial Agents and Chemotherapy, 54(3), 969–976. https://doi.org/10.1128/AAC.01009-09
Carle, S. (2009). La résistance aux antibiotiques : un enjeu de santé publique important ! Figure Sélection de souches. Pharmactuel, 42, 6–21.
CHASSAGNE, C. (2012). Caractérisation phénotypique de souches d â€TM entérobactéries produisant une oxacillinase-48 isolées lors d â€TM une épidémie survenue au CHU de Nancy en 2009 / 2011 ., 126, 5–20.
Cuzon, G., Naas, T., & Nordmann, P. (2010). KPC carbapenemases: What issue in clinical microbiology? Pathologie Biologie, 58(1), 39–45. https://doi.org/10.1016/j.patbio.2009.07.026
DM, L. (1995).  -Lactamases in Laboratory and Clinical Resistance. Clinical Microbiology Reviews, 8(4), 557–584.
Edelstein, M., Pimkin, M., Palagin, I., Edelstein, I., & Stratchounski, L. (2003). Prevalence and Molecular Epidemiology of CTX-M in Russian Hospitals. Antimicrobial Agents and Chemotherapy, 47(12), 3724–3732. https://doi.org/10.1128/AAC.47.12.3724
Elhani, D. (2012). Les bêta-lactamases à spectre étendu : le défi s’accentue. Annales de Biologie Clinique, 70(2), 117–140. https://doi.org/10.1684/abc.2012.0686
Eliopoulos, G. M., & Bush, K. (2001). New -Lactamases in Gram-Negative Bacteria: Diversity and Impact on the Selection of Antimicrobial Therapy. Clinical Infectious Diseases, 32(7), 1085–1089. https://doi.org/10.1086/319610
Facult, M. C., Domaine, M., Fili, V., Sp, S. B., Mol, B., Amel, B., … Oulmi, M. (2017). Profil bactériologique des bactériémies à bacilles Gram négatif.
Faure, S. (2009). Transfert d ’ un g ` ene de r ´ esistance aux beta-lactamines blaCTX-M-9 entre Salmonella et les ent ´ eries de la flore intestinale humaine : influence d ’ un traitement antibiotique entre Salmonella et les entérobactéries de la flore intestinale humaine. Thèse de Doctorat, Université de Rennes I, 191.
Generale, R. (1992). M thodes rapides de d tection et de diagnostic des mycobact ries : Actualit & et perspectives.
Guneysel, O., Onur, O., Erdede, M., & Denizbasi, A. (2009). Trimethoprim/Sulfamethoxazole Resistance in Urinary Tract Infections. Journal of Emergency Medicine, 36(4), 338–341. https://doi.org/10.1016/j.jemermed.2007.08.068
Gangoué-Piéboji, J., Bedenic, B., Koulla-Shiro, S., Randegger, C., Adiogo, D., Ngassam, P., … & Hächler, H. (2005). Extended-spectrum-β-lactamase-producing Enterobacteriaceae in Yaounde, Cameroon. Journal of clinical microbiology, 43(7), 3273-3277.
Hall, L. M. C., Livermore, D. M., Gur, D., Akova, M., & Akalin, H. E. (1993). OXA-11, an extended-spectrum variant of OXA-10 (PSE-2) β-lactamase from Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 37(8), 1637–1644. https://doi.org/10.1128/AAC.37.8.1637
Hanson, N. D. (2003). AmpC -lactamases: what do we need to know for the future? Journal of Antimicrobial Chemotherapy, 52(1), 2–4. https://doi.org/10.1093/jac/dkg284
Harder, K. J., Nikaido, H., & Matsuhashi, M. (1981). Mutants of Escherichia coli that are resistant to certain beta-lactam compounds lack the ompF porin. Antimicrobial Agents and Chemotherapy, 20(4), 549–552. https://doi.org/10.1128/AAC.20.4.549
Hirakata, Y., Matsuda, J., Miyazaki, Y., Kamihira, S., Kawakami, S., Miyazawa, Y., … Kohno, S. (2005). Regional variation in the prevalence of extended-spectrum β-lactamase-producing clinical isolates in the Asia-Pacific region (SENTRY 1998-2002). Diagnostic Microbiology and Infectious Disease, 52(4), 323–329. https://doi.org/10.1016/j.diagmicrobio.2005.04.004
Henderson, T. A., Young, K. D., Denome, S. A., & Elf, P. K. (1997). AmpC and AmpH, proteins related to the class C beta-lactamases, bind penicillin and contribute to the normal morphology of Escherichia coli. Journal of Bacteriology, 179(19), 6112-6121.
J., G. P. (2007). Caractérisation des beta-lactamases et leur inhibition par les extraits de plantes médicinales. Thèse de Doctorat, Centre d’Ingénierie Des Protéines, 127p.
Jacoby, G.A. (2009). AmpC β -Lactamases. Clinical Microbiology Reviews 22(1), 161–182.
Kassis-chikhani, N., Klebsielle, N. K., Pierre, L. U., Marie, E. T., & Paris, C. (2013). Klebsielle Pneumoniae pathogène nosocomial , résistance et virulence To cite this version : HAL Id : tel-00831671.
Knothe, H., Shah, P., Krcmery, V., Antal, M., & Mitsuhashi, S. (1983). Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection, 11(6), 315–317. https://doi.org/10.1007/BF01641355
Kruger, T., Szabo, D., Keddy, K. H., Deeley, K., Marsh, J. W., Hujer, A. M., … & Paterson, D. L. (2004). Infections with nontyphoidal Salmonella species producing TEM-63 or a novel TEM enzyme, TEM-131, in South Africa. Antimicrobial agents and chemotherapy, 48(11), 4263-4270.
Kumar, A., & Schweizer, H. P. (2005). Bacterial resistance to antibiotics: Active efflux and reduced uptake. Advanced Drug Delivery Reviews, 57(10), 1486–1513. https://doi.org/10.1016/j.addr.2005.04.004
Larabi, K., Masmoudi, A., & Fendri, C. (2003). Étude bactériologique et phénotypes de résistance des germes responsables d’infections urinaires dans un CHU de Tunis: À propos de 1930 cas. Medecine et Maladies Infectieuses, 33(7), 348–352. https://doi.org/10.1016/S0399-077X(03)00180-X
Leotard, S., & Negrin, N. (2010). Épidémiologie des entérobactéries sécrétrices de bêta-lactamases à spectre étendu (E-BLSE) au centre hospitalier de Grasse (2005-2008). Pathologie Biologie, 58(1), 35–38. https://doi.org/10.1016/j.patbio.2009.07.014
Livermore, D. M. (2003). Bacterial Resistance : Origins , Epidemiology , and Impact, 36(Suppl 1), 11–23. https://doi.org/10.1086/344654
Mahamat, A., Lavigne, J. P., Bouziges, N., Daurès, J. P., & Sotto, A. (2006). Profils de résistance des souches urinaires de Proteus mirabilis de 1999 à 2005 au CHU de Nîmes. Pathologie Biologie, 54(8–9 SPEC.ISS.), 456–461. https://doi.org/10.1016/j.patbio.2006.07.015
Matute, A. J., Hak, E., Schurink, C. A. M., McArthur, A., Alonso, E., Paniagua, M., … Hoepelman, I. M. (2004). Resistance of uropathogens in symptomatic urinary tract infections in León, Nicaragua. International Journal of Antimicrobial Agents, 23(5), 506–509. https://doi.org/10.1016/j.ijantimicag.2003.10.003
Meradi, L., Djahoudi, A., Abdi, A., Bouchakour, M., Perrier Gros Claude, J. D., & Timinouni, M. (2011). Résistance aux quinolones de types qnr, aac (6’)-Ib-cr chez les entérobactéries isolées à Annaba en Algérie. Pathologie Biologie, 59(4), 73–78. https://doi.org/10.1016/j.patbio.2009.05.003
Messai L., Achour W. et Ben Hassen A. 2007. Profil épidémiologique des entérobactéries isolées chez des patients neutropéniques. Pathologie Biologie; 55: 230-234.
Mkaouar, D., Mahjoubi, F., Mezghani, S., Znazen, A., Ktari, S., & Hammami, A. (2008). Étude de la résistance des entérobactéries aux céphalosporines de troisième génération dans les hôpitaux de Sfax, Tunisie (1999-2005). Medecine et Maladies Infectieuses, 38(6), 293–298. https://doi.org/10.1016/j.medmal.2007.11.017
Moyen, R., Ahombo, G., Nguimbi, E., Ontsira, N. E., Niama, R. F., Yala, G. C., & Louembe, D. (2014). Activity of beta-lactam antibiotics and production of beta-lactamases in bacteria isolated from wound infections in Brazzaville, Congo. African Journal of Microbiology Research, 8(23), 2290–2294. https://doi.org/10.5897/AJMR12.1663
Munoz-Price, L. S., Poirel, L., Bonomo, R. A., Schwaber, M. J., Daikos, G. L., Cormican, M., … Quinn, J. P. (2013). Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. The Lancet Infectious Diseases, 13(9), 785–796. https://doi.org/10.1016/S1473-3099(13)70190-7
Nadmia H., Elotmani F., Talmi M., Zerouali K., Perrier-Gros-Claude J.D. et Timinouni M. 2010. Profil de résistance aux antibiotiques des entérobactéries uropathogènes communautaires à El Jadida (Maroc). Médecine et maladies infectieuses; 40: 303-305.
Navon-Venezia, S., Hammer-Munz, O., Schwartz, D., Turner, D., Kuzmenko, B., & Carmeli, Y. (2003). Occurrence and phenotypic characteristics of extended-spectrum β-lactamases among members of the family Enterobacteriaceae at the Tel-Aviv Medical Center (Israel) and evaluation of diagnostic tests. Journal of Clinical Microbiology, 41(1), 155–158. https://doi.org/10.1128/JCM.41.1.155-158.2003
Nijssen, S., Florijn, A., Bonten, M. J. M., Schmitz, F. J., Verhoef, J., & Fluit, A. C. (2004). Beta-lactam susceptibilities and prevalence of ESBL-producing isolates among more than 5000 European Enterobacteriaceae isolates. International Journal of Antimicrobial Agents, 24(6), 585–591. https://doi.org/10.1016/j.ijantimicag.2004.08.008
Nordmann, P., & Poirel, L. (2013). Strategies for identification of carbapenemase-producing Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 68(3), 487-489.Poirel, L., Potron, A., & Nordmann, P. (2012). OXA-48-like carbapenemases: the phantom menace. Journal of Antimicrobial Chemotherapy, 67(7), 1597-1606.
Nouria, L., Djamel, E. A., Hafida, H., Frderic, R., & Richard, B. (2014). First characterization of CTX-M-15 and DHA-1 β-lactamases among clinical isolates of Klebsiella pneumoniae in Laghouat Hospital, Algeria. African Journal of Microbiology Research, 8(11), 1221-1227.
Oduyebo, O., Falayi, O., Oshun, P., & Ettu, A. (2015). Phenotypic determination of carbapenemase producing enterobacteriaceae isolates from clinical specimens at a tertiary hospital in Lagos, Nigeria. Nigerian Postgraduate Medical Journal, 22(4), 223. https://doi.org/10.4103/1117-1936.173973
Ouédraogo, A. S., Compain, F., Sanou, M., Aberkane, S., Bouzinbi, N., Hide, M., … Godreuil, S. (2016). First description of IncX3 plasmids carrying blaOXA-181 in Escherichia coli clinical isolates in Burkina Faso. Antimicrobial Agents and Chemotherapy, 60(5), 3240–3242. https://doi.org/10.1128/AAC.00147-16
Pagani, L., Migliavacca, R., Giacobone, E., Amicosante, G., Romero, E., & Rossolini, G. M. (2003). Multiple CTX-M-Type Extended-Spectrum -Lactamases in Nosocomial Isolates of. Society, 41(9), 4264–4269. https://doi.org/10.1128/JCM.41.9.4264
Paterson, D. L., & Bonomo, R. a. (2005). Extended-Spectrum b-Lactamase: a Clinical Uptodate. Clinical Microbiology Reviews, 18(4), 657–686. https://doi.org/10.1128/CMR.18.4.657
Potron, A., Nordmann, P., Lafeuille, E., Al Maskari, Z., Al Rashdi, F., & Poirel, L. (2011). Characterization of OXA-181, a carbapenem-hydrolyzing class D β-lactamase from Klebsiella pneumoniae. Antimicrobial agents and chemotherapy, 55(10), 4896-4899.
Philippon, A. (2008). Résistance bactérienne : définitions, mécanismes, évolution. EMC – Maladies Infectieuses, 5(3), 1–13. https://doi.org/10.1016/S1166-8598(08)26016-3
R, B. (2004). Growing group of extended spectrum: the CTX-M enzymes. Antimicrob Agent Chemother, 48(1), 1–14. https://doi.org/10.1128/AAC.48.1.1
Rodriguez-Villalobos, H., & Struelens, M. J. (2006). Résistance bactérienne par β-lactamases à spectre étendu : implications pour le réanimateur. Reanimation, 15(3), 205–213. https://doi.org/10.1016/j.reaurg.2006.03.006
Schwaber, M. J., & Carmeli, Y. (2007). Mortality and delay in effective therapy associated with extended-spectrum β-lactamase production in Enterobacteriaceae bacteraemia: A systematic review and meta-analysis. Journal of Antimicrobial Chemotherapy, 60(5), 913–920. https://doi.org/10.1093/jac/dkm318
Sekhsokh, Y., Chadli, M., & El Hamzaoui, S. A. (2008). Fréquence et sensibilité aux antibiotiques des bactéries isolées dans les urines. Medecine et Maladies Infectieuses, 38(6), 324–327. https://doi.org/10.1016/j.medmal.2008.02.003
Souna, D. (2011). Epidémiologie de la résistance aux antibiotiques des entérobactéries au niveau du C.H.U de Sidi Bel Abbes. Mémoire de Magister En Biologie Option Biochimie Appliquée À L’université Abou Bekr Belkaid Faculté Des Sciences de La Nature et de La Vie et Sciences de La Terre et de L’univers À Tlemcen., (July 2011), 2010–2011. https://doi.org/10.1117/12.535478
Sire, J. M., Nabeth, P., Perrier-Gros-Claude, J. D., Bahsoun, I., Siby, T., Macondo, E. A., … & Garin, B. (2007). Antimicrobial resistance in outpatient Escherichia coli urinary isolates in Dakar, Senegal. The Journal of Infection in Developing Countries, 1(03), 263-268.
Spanu, T., Luzzaro, F., Perilli, M., Amicosante, G., Toniolo, A., Fadda, G., … Miragliottan, P. G. (2002). Occurrence of extended-spectrum β-lactamases in members of the family Enterobacteriaceae in italy: Implications for resistance to β-lactams and other antimicrobial drugs. Antimicrobial Agents and Chemotherapy, 46(1), 196–202. https://doi.org/10.1128/AAC.46.1.196-202.2002
https://doi.org/10.1016/j.ijid.2014.05.021
Vall, M., & Ann Huletsky1, 2, M. G. B. (2015). SRapid and Sensitive Real-Time Multiplex PCR Detection of blaKPC, blaNDM, blaOXA-48-like, blaIMP, and blaVIM Carbapenemase Genes directly from Stools.
Vodovar, D., Marcadé, G., Raskine, L., Malissin, I., & Mégarbane, B. (2013). Entérobactéries productrices de bêta-lactamases à spectre élargi: Épidémiologie, facteurs de risque et mesures de prévention. Revue de Medecine Interne, 34(11), 687–693. https://doi.org/10.1016/j.revmed.2012.10.365
Vora, S., & Auckenthaler, R. (2009). Que signifie «bêtalactamases à spectre élargi» en pratique? Revue Medicale Suisse, 5(220), 1991–1994.
Wu, J. J., Ko, W. C., Tsai, S. H., & Yan, J. J. (2007). Prevalence of plasmid-mediated quinolone resistance determinants QnrA, QnrB, and QnrS among clinical isolates of Enterobacter cloacae in a Taiwanese hospital. Antimicrobial Agents and Chemotherapy, 51(4), 1223–1227. https://doi.org/10.1128/AAC.01195-06.
How to cite this article
Mpelle, F.L., Nguimbi, E. Ngoyi, E.N.O., Kayath, C.A., Kobawila, S.C. (2022). Characterization of TEM and CMY-2 beta-lactamases in Enterobacteriaceae strains isolated at the Brazzaville University and hospital center in Congo. Microbial Science Archives, Vol. 2(4), 60-72. https://doi.org/10.47587/MSA.2022.2405
Licence Article Metadata
This work is licensed under a Creative Commons Attribution 4.0 International License.