Mwanzo Wavindu1,2,3, Edith B. Mouafo Tamnou1, Ildephonse Soly Kamwira2, Paul Alain Nana4, Geneviève Bricheux5, Maximilienne A. Nyegue3, Télesphore Sime-Ngando6 Moïse Nola1,✉
1Laboratory of Hydrobiology and Environment, Faculty of Sciences, University of Yaounde I, Cameroon
2Central Research Laboratory, Faculty of Pharmaceutical Sciences, Catholic University of Graben, DR Congo
3Laboratory of Medical Microbiology, Faculty of Sciences, University of Yaounde I, Cameroon
4Department of Oceanography and Limnology, Institute of Fisheries and Aquatic Sciences, University of Douala, Cameroon
5Laboratoire « Microorganismes: Génome et Environnement » (LMGE), UMR CNRS 6023, Université Clermont Auvergne, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat, TSA 60026 – CS 60026, 63178 Aubière Cedex, France
6Laboratoire « Microorganismes: Génome et Environnement » (LMGE), UMR CNRS 6023 et Laboratoire Magmas et Volcans (LMV), UMR IRD 163. Campus Universitaire des Cézeaux, TSA 60026 – CS 60026, 63178 Aubière Cedex, France
Received: Sept 12, 2023/ Revised: Oct 15, 2023/Accepted: Oct 17, 2023
(✉) Corresponding Author: Moïse NOLA
Abstract
ESBL-producing enterobacteria have a significant impact on public health as they provide antibiotic resistance. Little is known about the relative diversity in various types of biotopes in the same geographical area. This study aimed to determine their diversity and abundance in 3 different aquatic environments. Samples from wells, river water, and hospital wastewater were analyzed. ESBL-producing enterobacteria isolated were identified using double-disk synergy test method based on enzymatic tests. Results showed that the abundance of total enterobacteria in log (CFU/100 µL) varied from 0.60 to 2.10 in wells, from 0.79 to 5.73 in rivers, and from 1.58 to 6.52 in hospital wastewater. That of ESBL-producing enterobacteria reached 6.23 in hospital wastewater, 3.08 in river samples and 2.04 in wells. Their relative abundances compared to all of the isolated enterobacteria varied from 0.34 to 4.55% in wells, from 0 to 97.5% in rivers and from 0.73 to 61.29% in hospital wastewater. Their abundances and diversity varied significantly between hospital wastewater and the 2 other types of samples analyzed (P<0.05). ESBL-producing enterobacteria identified included Escherichia coli, Ewingelia americana, Erwina spp, Citrobacter freundii, Edwarsiella spp, Klebsiella ozaenae, Shigella spp, Enterobacter aerogenes, E. agglomerans, Citrobacter diviersys, Proteus mirabilis, Serratia fonticola, Serratia ficana, Moellerella wisconsensis, Klebsiella rhinoscleromatis and Providencia rettgeri. Among these, 12 were identified in hospital wastewater, 6 in river water and 4 in wells. The Shannon and Weaver diversity index showed an uneven distribution of ESBL-producing enterobacteria species and the dominance of a few species. Most species in wells and rivers were identified in hospital wastewater.
Keywords: ESBL-Producing Enterobacteria, Abundance, Diversity, Wells, River Water, Hospital Wastewater.
References
Akhtar, A., Fatima, N., & Kahn, H. M. (2022). Beta-Lactamases and their classification: An overview. In: Shahid, M., Singh, A., & Sami, H. (eds). Beta-lactam resistance in Gram-negative bacteria. Springer, Singapore.
Doi:10.1007/978-981-16-9097-6_3.
An, X. L., Su, J. Q., Li, B., Ouyang, W. Y., Zhao, Y., Chen, Q. L., Cui, L., Chen, H., Gillings, M. R., Zhang, T., & Zhu, Y. G. (2018). Tracking antibiotic resistome during waste water treatment using high throughput quantitative PCR. Environment International, 117, 146-153.
Doi:10.1016/j.envint.2018.05.011.
Andade, L., Kelly, M., Hynds, P., Weatherill, J., Majury, A., & O’Dwyer, J. (2020). Groundwater resources as a global reservoir for antimicrobial-resistant bacteria. Water Research, 170, 115360.
Doi:10.1016/j.watres.2019.115360.
Arcilla, M. S., Van Hattem, J. M., Bootsma, M. C. J., van Genderen, P. J. J., Goorhuis, A., Grobusch, M. P., Klaassen, C. H. W., Oude Lashof, A. M., Schultsz, C., Stobberingh, E. E., de Jong, M. D., Penders, J., Verbrugh, H. A., & Melles, D. C. (2020). Prevalence and risk factors for carriage of ESBL-producing Enterobacteriaceae in a population of Dutch travellers: A cross-sectional study. Travel Med Infect Dis., 33:101547.
Doi:10.1016/j.tmaid.2019.101547.
Bock, L., Aguilar-Bultet, L., Egli, A., Battegay, M., Kronenberg, A., Vogt, R., Kaufmann, C., & Tschudin-Sutter, S. (2022). Air temperature and incidence of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae. Environmental Research, 215(Pt 2), 114146.
Doi:10.1016/j.envres.2022.114146.
Boudem Tsane, C. R., Moanono, P. G. T., Nonga Tang, B., Nanfack Dongmo, R., Sob Nangou, P. B., Tuekam Kayo, R. P., & Zebaze Togouet, S. H. (2021). Influence of the Mekin hydroelectric dam on the distribution of benthic macroinvertebrates of the Dja stream, South Cameroon region. World Journal of Advanved Research and Reviews, 12(2), 63-77.
Doi:10.30574/wjarr.2021.12.2.0552.
Chaturvedi, P., Chowdhary, P., Singh, A., Chaurasia, D., Pandey, A., Chandra, R., & Gupta, P. (2021). Dissemination of antibiotic resistance genes, mobile genetic elements, and efflux genes in anthropogenically impacted riverine environments. Chemosphere, 273, 129693.
Doi:10.1016/j.chemosphere.2021.129693.
Cho, S., Jackson, C. R., & Frye, J. G. (2023). Freshwater environment as a reservoir of extended-spectrum β-lactamase-producing Enterobacteriaceae. Journal of Applied Microbiology, 134, 1-22. Doi:10.1093/jambio/lxad034.
Collignon, P., Beggs, J. J., Walsh, T. R., Gandra, S., & Laxminarayan, R. (2018). Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. Lancet Planet Health, 2, e398-405.
Doi:10.1016/S2542-5196(18)30186-4.
Conte, D., Palmeiro, J. K., da Silva Nogueira, K., Lima, T. M. R., Cardosso, M. A., Pontaroto, R., Pontes, F. L. D., & Dalla-Costa, L. M. D. (2017). Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, waste water treatment plant, and river water. Ecotoxicology and Environmental Safety, 136, 62-69.
Doi:10.1016/j.ecoenv.2016.10.031.
Dantas Palmeira, J., & Neto Ferreira, H. M. (2020). Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production – A threat around the world. Heliyon, 6, e03206. Doi:10.1016/j.heliyon.2020.e03206.
Denis F., Ploy MC., Martin C., Bingen É. et Quentin R. (2012). Bactériologie médicale, techniques usuelles, Elsevier Masson, Paris, 2011, 631 pages. Bulletin De L’Académie Nationale De Médecine, 196(2), 542–544.
https://doi.org/10.1016/s0001-4079(19)31847-3
Duan, M., Gu, J., Wang, X., Li, Y., Zhang, R., Hu, T., & Zhou, B. (2019). Factors that affect the occurrence and distribution of antibiotic resistance genes in soils from livestock and poultry farms. Ecotoxicology and Environmental Safety, 180, 114-22.
Doi:10.1016/j.ecoenv.2019.05.005.
Elhani, A. (2012). The widening challenge of extended spectrum β-lactamases. Annales de biologie clinique, 70(2), 117-140.
Freitas, D. Y., Araujo, S., Folador, A. R. C., Ramos, R. T. J., Azevedo, J. S. N., Tacao, M., Silva, A., Henriques, I., & Barauna, R. A. (2019). Extended spectrum beta-lactamase-producing Gram-Negative bacteria recovered from an Amazonian Lake near the city of Belém, Brazil. Frontiers in Microbiology, 10, 364.
Doi:10.3389/fmicb.2019.00364.
Hooban, B., Joyce, A., Fitzhenry, K., Chique, C., & Morris, D. A. (2020). The role of the natural aquatic environment in the dissemination of extended spectrum beta-lactamase and carbapenemase encoding genes: A scoping review. Water Research, 180, 115880.
https://doi.org/10.1016/j.antinf.2012.04.003
Karkman, A., Pärnänen, K., & Larsson, D. G. J. (2019). Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nature Communications, 10, 80.
Doi:10.1038/s41467-018-07992-3.
Ke, Y., Sun, W., Jing, Z., Zhu, Y., Zhao, Z., & Xie, S. (2023). Antibiotic resistome alteration along a full-scale drinking water supply system deciphered by metagenome assembly: Regulated by seasonality, mobile gene elements and antibiotic resistant gene hosts. Science of The Total Environment, 862, 160887.
Doi:10.1016/j.scitotenv.2022.160887.
Larramendy, S., Deglaire, V., Dusollier, P., Fournier, J. P., Caillon, J., Beaudeau, F., & Moret, L. (2020). Risk factors of extendedspectrum beta-lactamases-producing Escherichia coli community acquired urinary tract infections: a systematic review. Infection and Drug Resistance. 2020;13:3945-55.
Doi:10.2147/IDR.S269033.
Lefort, A., & Nicolas-Chanoine, M. H. (2012). Les entérobactéries productrices de β-lactamases à spectre étendu (BLSE) et les céphalosporines de troisième génération en 2012. Journal Des Anti-Infectieux, 14(2), 51–57.
https://doi.org/10.1016/j.antinf.2012.04.003
Manaia, C. M. (2017). Assessing the risk of antibiotic resistance transmission from the environment to humans: Non-direct proportionality between abundance and risk. Trends in Microbiology, 25(3), 173-181.
Doi:10.1016/j.tim.2016.11.014.
Miao, X., Zhu, L., & Bai, X. (2022). Bacterial community assembly and beta-lactamase (bla) genes regulation in a full-scale chloraminated drinking water supply system. Journal of Environmental Chemical Engeneering, 10(3), 107677.
Doi:10.1016/j.jece.2022.107677.
Montero, L., Irazabal, J., Cardenas, P., Graham, J.P., & Trueba, G. (2021). Extended-spectrum beta-lactamase producing-Escherichia coli isolated from irrigation waters and produce in Ecuador. Frontiers in Microbiology, 12, 709418.
Doi:10.3389/fmicb.2021.709418.
Peng, F., Isabwe, A., Guo, Y., Chen, H., & Yang, J. (2019). An extensively shared antibiotic resistome among four seasons suggests management prioritization in a subtropical riverine ecosystem. Science of the Total Environment, 673, 533-540.
Doi:10.1016/j.scitotenv.2019.04.031.
Roberts, M. C. (2018). Antibiotics and resistance in the environment. In: Fong, I., Shlaes, D., & Drlica, K. (eds) Antimicrobial Resistance in the 21st Century. Emerging Infectious Diseases of the 21st Century. Springer, Cham.
Doi:10.1007/978-3-319-78538-7_12.
Rodier, J., Legube, B., & Merlet, N. (2016). L’analyse de l’eau-10e éd. Dunod.
Spadafino, J. T., Cohen, B., Liu, J., & Larson, E. (2014). Temporal trends and risk factors for extended-spectrum beta-lactamase-producing Escherichia coli in adults with catheter-associated urinary tract infections. Antimicrobial Resistance and Infection Control, 3(1), 39.
Doi:10.1186/s13756-014-0039-y.
Surette, M. D., & Wright, G. D. (2017). Lessons from the environmental antibiotic resistome. Annual Review of Microbiology, 71, 309–29.
Doi:10.1146/annurev-micro-090816-093420.
Symanzik, C., Hillenbrand, J., Stasielowicz, L., Greie, J.C., Friedrich, A.W., Pulz, M., Swen Malte, J., & Jutta, E. (2022). Novel insights into pivotal risk factors for rectal carriage of extended-spectrum-β-lactamase-producing enterobacteriale within the general population in Lower Saxony, Germany. Journal of Applied Microbiology, 132(4), 3256-3264.
Thornton, C. N., Tanner, W. D., Van Derslice, J. A., & Brazelton, W. J. (2020). Localized effect of treated waste water effluent on the resistome of an urban watershed. GigaScience, 9(11), giaa125. Doi:10.1093/gigascience/giaa125.
Vikesland, P., Ganer, E., Gupta, S., Kang, S., Maile-Moskowitz, A., & Zhu, N. (2019). Differential drivers of antimicrobial resistance across the world. Accounts of Chemical Research, 52(4), 916-24. Doi:10.1021/acs.accounts.8b00643.
How to cite this article
Mwanzo Wavindu, Mouafo Tamnou, E. B., Soly Kamwira, I., Nana, P. A., Bricheux, G., Nyegue, M. A., Sime-Ngando, T. and Nola, M. (2023). Relative abundance and diversity of extended-spectrum beta-lactamase-producing enterobacteria in some aquatic environments in an urbanized area in DR Congo. Microbial Science Archives, Vol. 3(4), 147-157. https://doi.org/10.47587/MSA.2023.3401
Licence Article Metadata
This work is licensed under a Creative Commons Attribution 4.0 International License.